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Abstract

In this paper we explore the logic of broad necessity. Definitions of what it means
for one modality to be broader than another are formulated, and we prove, in the
context of higher-order logic, that there is a broadest necessity, settling one of the
central questions of this investigation. We show, moreover, that it is possible to give
a reductive analysis of this necessity in extensional language (using truth functional
connectives and quantifiers). This relates more generally to a conjecture that it is not
possible to define intensional connectives from extensional notions. We formulate this
conjecture precisely in higher-order logic, and examine concrete cases in which it fails.
We end by investigating the logic of broad necessity. It is shown that the logic of broad
necessity is a normal modal logic between S4 and Triv, and that it is consistent with
a natural axiomatic system of higher-order logic that it is exactly S4. We give some
philosophical reasons to think that the logic of broad necessity does not include the S5
principle.

Say that a necessity operator, 21, is as broad as another, 22, if and only if:1

(*) 23(21P → 22P ) whenever 23 is a necessity operator, and P is a proposition.

Here I am quantifying both into the position that an operator occupies, and the position
that a sentence occupies. We shall give details of the exact syntax of the language we are
theorizing in shortly: at this point, we note that it is a language that contains operator
variables, sentential variables, and that one can accordingly quantify into sentence and
operator position. We will informally parse such quantification in English as quantification
over ‘propositions’ and ‘operators’, writing things like ‘for some operator, 2, 2P ’ for what
would be properly regimented as ‘∃XXP ’.2

∗Thanks to Cian Dorr, Peter Fritz, Jeremy Goodman and John Hawthorne, and to the members of the
Grain Exchange reading group for helpful comments and discussion. I would also like to thank the audience
of a colloquium at Oxford where I presented a talk based on this material. I owe a particular debt of
gratitude to two anonymous referees for this journal, whose feedback greatly improved this paper.

1The use of the terminology of ‘broadness’ has its pitfalls: the broader an operator, the fewer propositions
it applies to. The terminology derives from a way of modeling necessity operators in terms of worlds: the
broader the operator the broader the set of worlds it quantifies over.

2This way of talking is strictly speaking incorrect, since the predicates ‘is a proposition’ and ‘is an
operator’ will only grammatically combine with a singular term, and not a sentence or operator expression
(‘it’s not the case that is an operator’ is not grammatical for example). However, since English has no device
for quantifying into sentence or operator position, while it does have singular quantifiers, these paraphrases
are extremely convenient, and make clear which formal sentences they are going proxy for. Throughout, I
shall use the term operator expression to mean the sort of syntactic expression that prefixes a sentence to
form another sentence, and I shall reserve the term operator for the sort of thing that such an expression
denotes.
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For one operator to be at least as broad as another, according to (*), it must strictly
imply the other relative to any candidate notion of strict implication. Note, by contrast,
that some authors (e.g. Hale [21]) say that an operator is at least as broad as another if it
entails the other, where entailment is strict implication according to the broadest kind of
necessity. However to appeal to such a notion would be to prejudge an important question
— whether there is a broadest necessity — and moreover would make it hard to spell out
what it means to be ‘the broadest necessity’ in a non-circular way.

In order for this definition to be useful we need some informative characterization of a
‘necessity operator’, so that we may identify the range of 23 in (*). A natural thought is
that in order for an operator to count as a candidate necessity operator it must be normal in
the sense of Kripke [27]. However, this is again a hard idea to spell out without presupposing
the broad notion of entailment (strict implication according to the broadest necessity).3 In
what follows, then, I will employ a couple of weaker notions. The first is that of an operator
that applies to the tautologous proposition, >:4

Weak Necessity: 2 is a weak necessity operator if and only if 2>.

Clearly metaphysical necessity passes the test, as do various sorts of causal and epistemic
necessity. Indeed, any operator denoted by an expression governed by a normal modal logic
passes the test: the ‘always’ operator from tense logic, the determinacy operator employed
in the study of vagueness and counterfactual necessity (a proposition is counterfactually
necessary when its negation counterfactually implies a contradiction) all pass my test for
being a weak necessity operator.5 Some operators pass the test that are not as theoretically
interesting: for example if Jess said a tautology then Jess said that counts as a weak necessity
operator in my sense as well. Due to this weakness it will sometimes be useful to consider
a stronger notion as well:

Necessity: 2 is a necessity operator if and only if 2′2> whenever 2′ is a weak
necessity operator.

A weak necessity operator applying to > might do so only contingently (for instance, the
operator Jess said that). By contrast a necessity operator must apply to > necessarily, for
any reasonable candidate notion of necessity. Since any reasonable candidate necessity oper-
ator will at least pass the test for being a weak necessity our definition ensures this. Again,
the candidates listed above are arguably necessities in this sense, given certain assumptions
about fineness of grain.6 Note, by way of comparison, that one important property of nor-
mal modal operators is also secured by our notion of necessity. If 2 is a necessity, it is also a

3An operator 2 might be said to be normal only if 2P is logically necessary (propositionally entailed by
the empty set of propositions) whenever P is, and that the proposition 2(P → Q)→ 2P → 2Q is logically
necessary.

4> may be defined explicitly as A → A for some particular proposition A, or taken as primitive as
in some presentations of propositional logic. The uniqueness of the tautologous proposition will recieve a
justification shortly.

5An operator expression is normal, relative to an interpretation, if all the theorems of the smallest modal
logic K are true in that interpretation. This has a rule of necessitation: if you can prove A from K then you
can prove 2A. Any operator denoted by a normal modal operator expression applies to > because ‘2>’ is
provable in K.

6The relevant assumption is that > is the same proposition as the proposition that it’s metaphysically
necessary that >, and similarly for always/determinacy/etc. These sorts of identities can be proved by
augmenting the logic of metaphysical necessity (or the logic of determinacy, or tense logic) with the Rule of
Equivalence discussed in section 3, but the motivation for them are of a piece with the sorts of motivations
for Booleanism.
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weak necessity operator: since it’s true that is a weak necessity operator, truth must apply
to 2> (by the definition of a necessity operator). Since 2 is a weak necessity operator it
also follows from the definition of a necessity operator, and the fact that 2 is a necessity
operator, that 22>, and by repeating this reasoning that 222>, and so on. Indeed, it can
be show that the iterations of 2 — 22, 222 and so on — are themselves also necessity
operators by a similar sort of argument.7

It is fair to wonder whether the definition of broadness and necessity operator adopted
above can do the same work as the standard definitions, couched in terms of propositional
entailment or some affiliated notion. Our definition ensures that if 21 is at least as broad as
22, then the former ‘entails’ the latter, on each proposition, for every candidate notion of
‘entailment’, where these candidates are captured by our definition of a necessity operator.
One might worry that this definition of a candidate casts its net too wide, and nothing
can entail anything else in all the relevant senses. We shall see shortly that given certain
assumptions about fineness of grain this worry is ill founded. What matters for our purposes
is that we have caught all the kinds of entailment that matter, for if 21 is broader than 22

then 21P metaphysically implies 22P , always implies it, determinately implies it, a priori
implies it, and so on.

In the above > stands for a particular tautology. However, for all we’ve said, our
definition could yield different results when different tautologies are used. If propositions
are very fine grained, for example, then there could be more than one tautology and different
operators could apply to some tautologies but not others. In this paper we will rule this
possibility out by adopting the assumption of Booleanism. We will have more to say about
this later, but for the present purposes this assumption can effectively be summarized by
the rule that we can substitute sentences for other sentences that are equivalent in the
propositional calculus.8 In particular, it follows that 2> is true only if 2>′ whenever >′ is
any Boolean combination of propositions that has a tautologous form, since all tautologies
are equivalent in the propositional calculus. (Note: Booleanism is not to be confused with
the thesis that metaphysically necessarily equivalent propositions are the same, which is a
much stronger thesis that will be rejected here.)

An open question at this juncture is whether there is such a thing as a maximally broad
necessity operator: a necessity operator such that no other necessity operator is broader than
it. One way this could fail would be if for every necessity operator there was a necessity
operator broader than it (a view of this sort is defended by Agust́ın Rayo in [38]). Even if
this is settled, there could be two or more maximally broad necessity operators such that
neither is broader than the other (Dorothy Edgington has defended a view of exactly this
sort [15] with respect to metaphysical necessity and a priori knowability). Both of these

7Suppose 2′ is any weak necessity. Then if 2 is a necessity operator it follows that 2′2> is true, so that
2′2 is also a weak necessity. Finally, since 2 is a necessity operator, and 2′2 is a weak necessity, it follows
that 2′22> is true. Thus 2′22> is true whenever 2′ is a weak necessity and so 22 is a necessity operator.
The generalises to the other iterations of 2.

8We can express this more precisely in a propositional language with operator constants, by adding to
the propositional calculus the rule: if ` A ↔ B then ` φ ↔ φ[A/B]. Note that this is slightly stronger
than the intersubstitutivity of Boolean equivalents: this allows us to substitute A and B that are provably
equivalent given the propositional calculus and the Booleanism rule. So, for example, we can substitute
2(A ∧ B) → 2(B ∧ A) for > in any context φ, since these are provably equivalent given the propositional
calculus and our rule. However this is something which couldn’t be proved from the intersubstitutivity of
tautological equivalents alone, since they aren’t tautological equivalents. (The extra strength that this rule
provides could more transparently be achieved by adding a propositional identity connective to the language,
and adding axioms to the effect that Boolean equivalents are identical. We will consider such a connective
in section 3.)
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possibilities preclude the existence of a broadest necessity operator: a necessity operator
that is at least a broad as every other necessity operator.

In the wake of Kripke’s ‘Naming and Necessity’ this question might seem like a partic-
ularly urgent one. Once it is acknowledged that metaphysical necessity and a priori truth
are different notions with different extensions there is a natural question as to which of
these is broader than the others, if any. Once this question is raised it is tempting to ask
similar questions about other cognate notions such as analyticity, logical validity, and so on.
But it is important to distinguish here two different sorts of things one might be tempted
to call a ‘kind of necessity’. Notions like analyticity, logical validity (truth in all models)
and provability are all properties of sentences, whereas notions like metaphysical necessity
and (more contentiously) a priori truth are properties of propositions. Since no linguistic
notion of necessity applies to a propositional necessity, and conversely (assuming that no
propositions are sentences and conversely) the question of broadness across these sorts of
necessity is not particularly interesting. Indeed, the question of whether there is a broadest
linguistic necessity is also trivialized in the present setting: sentences are so fine grained
that the assumption of Booleanism doesn’t apply. The linguistic analogues of our above
definitions make little sense without this assumption.9 In short, the question for linguistic
necessities would have to be radically reformulated, and I suspect it will be hard to do so
in a suitably precise setting to derive the sorts of results I present below.

The existence of a broadest necessity operator is the topic of this paper. I shall argue,
along with many others (e.g. Hale [21], McFetridge [31]), that there is a broadest necessity.
But my project will also be to give an analysis of this necessity; indeed an analysis that has
a reasonable claim to being a reductive one.

The paper is structured as follows. In section 1 we introduce the framework of higher-
order logic. Those familiar with higher-order logic, or wishing to get straight to the philo-
sophical content, may skip ahead to section 2. There I draw out some general features of
the logic of the broadest necessity on the supposition that it exists, and give some reasons to
think that metaphysical necessity is not the broadest necessity. In section 3 we investigate
a definition of necessity explored by Suszko [48] and Cresswell [9], in which it is explained
in terms of another intensional connective — propositional identity. The main results of
the paper are found in section 4, where we give, within the framework of higher-order logic,
a definition of the broadest necessity in logical vocabulary, using only the truth functional
connective → and the higher-order quantifiers ∀. From this we will be able to prove from
this definition that this operator is the broadest necessity, and are also able to prove that it
is identical to the Cresswell-Suszko operator. It’s worth emphasizing that this result might
seem initially somewhat surprising, since by contrast it is clearly not possible to define any
intensional notions from the truth functional connectives and the first-order quantifiers. We
explore this fact, introducing explicit definitions of extensional and intensional contexts,
and discuss the result that it’s possible to define intensional contexts from extensional ones.
We also draw some connections between substantive principles in higher-order logic and the
logic of broad necessity; we see for example, that the axiom of functionality implies the
Barcan formula, and prove uniqueness theorems for identity and broad necessity. Finally

9For example, the linguistic analogue of our definition of a necessity operator would be dependent on
which tautology was chosen in the definition. The question of broadness on this way of doing things would
become uninteresting. Suppose that we chose the tautology A ∨ ¬A. Then following parallel definitions, a
linguistic necessity predicate N1 is at least a broad as another N2 iff N3(pN1(pBq)→ N2(pBq)q) is true for
every every sentence B and predicate N3 applying to pA∨¬Aq. But any predicate that applies to pA∨¬Aq
and nothing else can be substituting for N3, but does not apply to pN1(pBq)→ N2(pBq)q. So no linguistic
predicate would count as broader than any other if we followed analogues of the above definitions.
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we turn to the question of the logic of the broadest necessity in section 5, and give some
tentative reasons to think that it might be weaker than S5 (but no weaker than S4). In the
appendix we establish that every transitive reflexive accessibility relation of a set of worlds
gives rise to a model of higher-order logic in which the broadest necessity is given by that
accessibility relation. As a consequence, S4 is complete relative to a general class of models
of higher-order logic, establishing that the axiomatic system of higher-order logic of section
4 cannot prove anything about the propositional modal logic of the broadest necessity that
cannot already be proven in S4. S5, by contrast, is sound and complete with respect to full
models.

1 Higher-Order Logic

To make the preceding definitions precise requires us to theorize in the language of higher-
order logic: a very general framework for reasoning about connectives and other expressions
that do not take the position of a singular term. For example, our definitions of broadness
and of a necessity operator required us to talk about all operators of a certain sort. These
definitions can be stated in a language where we are able to quantify into the position that
these operators occupy, and higher-order logic is exactly the sort of framework in which this
sort of thing can be done.

First-order quantifiers allow one to quantify into the position that a singular term occu-
pies. Consider, for example, the inference from 1 to 2:

1. 2Fa

2. ∃x2Fx

in 2 a bound variable is taking the place that the singular term a takes in 1 (and this
inference is, incidentally, valid). In higher-order logic one can quantify into the position of
any expression whatsoever. So for example the inference from 1 to 2′ expresses the idea
that there is some property a necessarily has by quantifying into the position the predicate
F occupies:

2′. ∃X2Xa

Following Frege, we shall call the things in the range of the variable X concepts. Similarly, we
can quantify into the position that the operator 2 occupies to conclude that some operator
applies to the proposition that Fa:

2′′. ∃XXFa

Another ingredient of the version of higher-order logic we shall be employing here is the
use of λ expressions to create further operators, predicates and other expressions using
expressions we already have. For example, suppose we wish to express the fact that the
complex predicate being necessarily F instantiates the higher-order concept of applying to a.
We would first need a predicate in our language expressing being necessarily F (the obvious
candidates don’t work: 2Fx is an open sentence, not a predicate, and 2F isn’t a well-
formed expression since operators cannot take predicates as arguments). This is achieved
by the use of a lambda expression λx2Fx. The concept of applying to a can similarly be
formalized using a lambda expression λX Xa. Thus we may write (λX Xa)λx2Fx. (For a
precise, recursive definition of the well-formed terms of higher-order logic the reader should
consult the appendix.)
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λ expressions are governed by two rules that intuitively say that lambda-abstraction and
application are inverses of each other. The β rule allows one to substitute a term of the form
(λxφ)α for φ[α/x] salve veritate, provided α doesn’t contain any variables that get bound
upon substitution. Thus, for example, by β-reduction (λX Xa)λx2Fx is equivalent to 2Fa
(exercise). In a sense the β rule says that application is a left-inverse of lambda-abstraction:
if I abstract x from φ (i.e. λxφ) and then apply the result to x (so (λxφ)x) I get something
equivalent to what I started with: φ. The η rule intuitively says that application is a right
inverse of lambda abstraction: if I apply a predicate φ to a variable (i.e. φx) and lambda
out the variable (i.e. λxφx) I get something equivalent to what I started with. Formally
this means that φ is the same, and thus can always be substituted for λxφx (e.g. ‘... is a
dog’ and ‘... is an x such that x is a dog’ are equivalent).10

A single variable cannot be used to take the position of expressions of more than one
type: every variable is associated with a unique type, usually indicated by a subscript xσ.
In practice we will keep type subscripts tacit if they can be inferred from the context: in 2
x has type e, in 2′ and 2′′, X has types e → t and t → t respectively. The sorts of types
an expression can take on include the type of a sentence, singular term, predicate, operator
and so on. A complete specification of the possible types of expressions in our language may
be prescribed as follows. There are two basic types, e and t, standing for entity and truth
evaluable, representing the types of sentences and singular terms respectively. If σ and τ
are types then there is also a type σ → τ representing expressions that take an expression
of type σ as argument and produce an expression of type τ when concatenated. Since an
operator takes a sentence as argument and results in another sentence its type is t → t.
Since a predicate takes a singular term and gives a sentence back its type is e → t. If
you supply something of type e → e → t with two singular terms in succession you get a
sentence, so this is naturally the type of a binary relation, and for similar reasons t→ t→ t
is the type of a binary connective. (In the preceding, and elsewhere, we associate brackets
in types to the right, so that e → e → t stands for e → (e → t); we also follow the usual
convention of dropping outermost brackets.)

In general every constant and variable of the language will be assigned a unique type. If
M and N are expression of type σ → τ and σ respectively then MN has type τ . If x has
type σ and M has type τ then λxM has type σ → τ . The convention is to use upper-case
variables when the variable is being applied to something, and lower-case variables when
something is being applied to it. The convention has to break, however, when the same
variable is applied and has something applied to it in the same term.

Higher-order logic is a particular family of typed languages that contain a binary con-
nective → (which, recall, has type t→ (t→ t)) and for each type σ a quantifier ∀σ of type
(σ → t) → t that generalizes over things of type σ. If F is a predicate of type σ things
(so F has type σ → t) then ∀σF intuitively says that F applies to everything of type σ.
Note that on this interpretation ∀tXX defines a contradictory proposition ⊥, and from →
and ⊥ all the truth functional connectives can be defined.11 The existential quantifier ∃σ

10It is not often noted, but the principle of α equivalence, that allows one to re-letter bound variables,
can be derived from the βη rules (which is why we have not included it in our discussion). A term of the
from λxφ is η-equivalent to λyλxφy which by applying β reduction to the subterm (λxφ)y is equivalent to
λy φ[y/x]. This gives us α-equivalence since any relettering of bound variables in a term will amount to a
relettering of a subterm of the form λxφ (λ is the only variable binder in the language).

11What I mean here is that connectives behaving truth-functionally like each truth functional connective
can be defined. On a structured theory of connectives, ∨ and λxy ((x → ⊥) → y) necessarily have the
same truth-functional behaviour but are distinct. We shall later consider some principles that rules out such
differences: see the discussion of Functionality and the Rule of Equivalence in section 4.
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can then be defined by duality.12 Quantifiers in this setting do not bind variables. If we
want to bind a free variable in an open formula, such as 2Fx, we first λ abstract to a get
a predicate and then apply the quantifier, as in the following example: ∃eλx2Fx. In such
cases we suppress the λ yielding the more familiar formula 2: ∃x2Fx (here we also suppress
the type subscript on the quantifier when no confusion arises). The reader may also consult
the appendix for more precise definitions.

In general we shall proceed informally, but underwriting our discussion is an axiomatic
system of higher-order logic. A theory is just a set of terms of the language of type t. An
axiom (such as UI below) is to be understood as a member of the theory, and a rule (such
as Gen below) is to be understood as saying that the conclusion of the rule is in the theory
whenever the premises are. (When we later talk about rules being ‘added’ to theories, we
will always mean that the theories are to be closed under the rules.) The theory below is
called H.

PC All instances of propositional tautologies.

MP From A and A→ B infer B

Gen From A→ B infer A→ ∀σxB when x does not occur free in A.

UI ∀σxφ → φ[t/x] (where t is a term of type σ and no variable in t gets bound when
substituted into φ)

βη A↔ B whenever A and B are βη equivalent terms of type t.

Terms are βη equivalent if you can get one from the other using the β and η rules described
earlier. We will consider a couple of extensions of H in section 4.

It should be noted that we have so far been talking informally about ‘propositions’, ‘oper-
ators’, ‘concepts’, ‘quantifiers’ and so on; grammatically these are predicates taking singular
terms as arguments. As such this is an inherently sloppy way to paraphrase quantification
into positions occupied by non-singular expressions (see, for example, the famous ‘concept
horse’ problem; Frege [19]). If we were truly to express in English what we achieve with a
quantified formula of higher-order logic, we would have to take liberties with English: ‘be-
cause John walks, he somethings’, although it is not obviously unintelligible, is questionable
English. We entrust it to the reader to translate our sloppy singular talk of operators and
concepts into the relevant sort of quantification in higher-orderese. We will not attempt to
give a full defense of the intelligibility of higher-order quantification here; for this we refer
the reader to Frege [19], Prior [37] chapter 3 and Williamson [52].

Since most of our reasoning only involves the use of quantification into the position an
operator occupies, it is worth asking why we have decided to conduct our investigation in full
higher-order logic with λ expressions and not merely the fragment that allows quantification
into operator position and doesn’t use λ expressions. One reason is that many true principles
about operators fall out of the full theory which would otherwise have to be imposed in a
piecemeal way. For example, we will shortly argue that if L is the broadest operator it has
to be at least as broad as LL. But to make this reasoning precise we would need a principle
that guaranteed that if an operator existed so does its iterations. More generally we want
to ensure that the domain of the operator quantifiers is closed under composition. This is a
simple consequence of higher-order logic, for any operators N and O we have the operator
λxNOx (which we can instantiate with our universal quantifiers and from which we can

12More precisely, ∃σ := λX ¬∀σλx¬Xa.
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infer existential generalizations). More generally we have a composition operator of the
comparatively high type (t→ t)→ (t→ t)→ t→ t defined as λXλY λxXY x, which takes
two operators as input and outputs their composition. These sorts of points demonstrate
the utility of including λ expressions and the portion of type hierarchy the lies beyond the
operator fragment.

Note that with the power of higher-order logic at our disposal, key concepts introduced
in the opening section can now be given precise definitions in terms of quantification into
operator position. For example:

Weak Necessity The claim that 2 is a weak necessity is 2>, so the property of being a
weak necessity is λX X>.

Necessity The claim that 2 is a necessity can be expressed with the formula ∀X(X> →
X2>). We shall abbreviate this Nec(2). (So that, explicitly, Nec := λY ∀X(X> →
XY>).)

Broadness The claim that 21 is at least as broad as 22 can be expressed with the formula
∀X∀y(Nec(X) → X(21y → 22y)), where X has type t → t and y type t. (Ex-
plicitly, broadness is a relation between operators of type (t → t) → (t → t) → t:
λY λZ∀X∀y(Nec(X)→ X(Y y → Zy).)

2 Metaphysical Necessity

Although we shall proceed informally, in this section we will make a number of arguments
that can be carried out in H with the additional assumption of Booleanism. We capture the
assumption of Booleanism by the rule that you can substitute A for B in any sentence if A
and B are provably equivalent in the propositional calculus augmented with this rule.13

Let us for a moment examine what follows from the supposition that there is a broadest
necessity operator, L. It is natural to wonder what modal principles this operator would
obey. Consider first the operator that maps each proposition to itself. In higher-orderese
this is defined by the formula λX X where X is a variable taking the position of a sentence.14

We shall call this the truth operator and we shall abbreviate it as ‘T ’. Since T> is just the
same proposition as >, 2T> is true whenever 2> is true (applying β and the definition of
T inside the scope of 2). This means that T is a necessity operator. If L is the broadest
necessity it is as broad as T . So substituting T for both 23 and 22 in (*) (by UI) we get
T (LA→ TA) which is just equivalent to the T axiom (by β again):

T LA→ A

This means that the broadest necessity, if there is one, must be factive. Intuitively this is
just because the broadest necessity operator must at least be broader than truth.

Given any proposition B, we may define a complex operator K := λX (L(X → B) →
LB). That is, the operator that applies to A iff: if A L-necessitates B then B is L-necessary.
This operator is, in fact, a necessity operator: K> is just L(> → B) → LB (by β). By
Booleanism we may substitute > → B for B, to obtain the equivalence of K> with the

13As emphasized in footnote 8, note that the rule allows the rule itself to be used in a proof that A
and B are materially equivalent. Everything that can be proved from this rule could be proved from the
assumption that Boolean equivalents are identical and a minimal logic of propositional identity (self-identity
and Leibniz’s law). We shall discuss the propositional identity connective shortly.

14Given Booleanism it is also definable as, e.g., double negation.
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tautology LB → LB, since > → B and B are equivalent in the propositional calculus.
Given that K> is equivalent to the tautology (namely, LB → LB), every weak necessity
applies to K> (again applying Booleanism) so K is a necessity operator.15 If L is the
broadest necessity operator it must be as broad as this operator, so by substituting K for
22, and T for 23 in (*) as before, we get: LA → (L(A → B) → LB), which rearranges to
an instance of the familiar modal principle K:

K L(A→ B)→ (LA→ LB)

Since we can construct a similar operator for any choice of B, and argue in a parallel way
that L must be as broad as it, the principle K must hold in full generality.

The preceding results hold even on the weaker assumption that L is a broadest weak
necessity. However, given that L is the broadest necessity then it follows from our earlier
observation that its iterations LL, LLL, and so forth, are also necessities. This entails two
things. Firstly, if L is the broadest necessity it must in particular be at least as broad as
LL:

4 LA→ LLA

this follows by substituting T for 23 and LL for 22 in (*).
Note finally that T, K and 4 are all instances of (*) with 23 instantiated with the truth

operator. If we instead instantiate 23 with L, we get the L-necessity of each of T, K and 4,
and indeed given the 4 principle we can infer that these principles are L-necessary at every
order — for example, from L(LA→ LLA) we can infer LL(LA→ LLA), LLL(LA→ LLA),
and so on ad infinitum. The resulting system, whose axioms consist of instances of T, K
and 4 prefixed by some number of Ls (possibly zero), is easily seen to be equivalent to the
modal system S4, since the result of necessitating all the axioms at all orders has the same
effect as assuming the law of necessitation.

Thus we have argued that if there is a broadest necessity operator it satisfies the theorems
of S4.16 But the question of whether there is a broadest necessity operator is left open. The
orthodoxy, which I wish to uphold, is that there is a broadest such necessity. However the
predominant strategy towards answering this question in the affirmative has been to argue
that a particular candidate fills that role: metaphysical necessity (see, e.g., Kripke [29]).17

I think there are several reasons to be dissatisfied with this candidate.
As Kripke demonstrated, there are some metaphysically necessary truths that are not a

priori — for example the truth that it’s actually sunny is necessary (if true) but certainly
not a priori. So metaphysical necessity is not broader than knowability a priori. Moreover,
a priori necessity is not the broadest necessity operator either, because there are a priori
truths that aren’t metaphysically necessary, such as the truth that it’s actually sunny if
and only if it’s sunny. It appears as though we have two candidate operators, but they are
incomparable — neither is broader than the other.18

This case is contentious because one might think that a priori knowability, being ex-
plained in terms of intentional attitudes like knowledge, is subject to a sort of guise sensi-
tivity that infects many attitude verbs, and that the proposition that it’s actually sunny is

15This argument uses the sort of iterated application of Booleanism noted in footnote 8.
16And by an argument due to Scroggs this logic cannot be stronger than S5: see the discussion in section

5.
17In Kripke’s words, metaphysical necessity is ‘necessity in the highest degree’ (p99).
18Edgington [15], for example, concludes from this that there are just two independent families of modal

notions — metaphysical modalities and epistemic modalities; see McFetridge [31] for critical discussion.
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knowable a priori if it is accessed via the right sort of guise.19 One might argue that a priori
knowability is thus not a property of propositions alone, and so is closer to the linguistic
notions of necessity we set aside earlier.

The question of whether the puzzles surrounding propositional attitudes force there to
be a necessity operator that is broader than metaphysical necessity is fraught. If there is a
necessary proposition, p, such that one could believe that > (say) without believing that p,
then metaphysical necessity would not be broader than belief (the latter is a weak necessity
operator because by supposition it applies to >). Yet there are many maneuvers available
for explaining why it might seem as though you could believe a tautology without believing
every necessary proposition, even if you can’t.20

Given certain background assumptions, however, there are independent sources of fine-
ness of grain that have nothing to do with propositional attitudes, from which broader
notions of necessity can be introduced. One of these sources of fineness of grain comes from
the presence of tense operators, given the assumption of temporalism (that there are some
propositions that are not always true or always false), and some reasonable theses about the
logic of ‘always’.21 On the orthodox treatment of tense operators (see Kaplan [25] and Fine
[18]) it’s a temporary matter which propositions are necessary. For example, suppose it is
Wednesday. Since it is Wednesday it is actually Wednesday, and moreover, since whatever
is actually true is necessarily actually true, it is necessarily actually Wednesday. But of
course, it is not always Wednesday, and so it is not always actually Wednesday. Thus we
have a proposition A — that it’s actually Wednesday — that is necessary but not always
true. In short the following instance of (*) has false instances, and so metaphysical necessity
cannot be broader then the always operator.

If it’s metaphysically necessary that A then it’s always the case that A.

If the invocation of the actuality operator seems too abstruse, the point can be made without
appealing to it. It is natural to think that while non-fundamental facts, like the fact that it’s
Wednesday, can be temporarily true, all fundamental facts are eternal. Facts about the field
values at particular space-time points, for example, are always true if ever true. Moreover
it’s natural to think that all truths supervene, metaphysically, on such fundamental truths.
Let F be the conjunction of all the fundamental truths. Since F is true, and it’s Wednesday,
we know that it’s metaphysically possible that both F and it’s Wednesday. Moreover, since
it won’t be Wednesday tomorrow, but it’s always the case that F (since F is fundamental), it
follows that sometimes F and it’s not Wednesday. But if metaphysical necessity were broader
than eternal truth, then ‘sometimes F and it’s not Wednesday’ entails ‘possibly F and it’s
not Wednesday’. This contradicts a natural thesis stating that everything metaphysically
supervenes on the fundamental, for we have shown there are two metaphysical possibilities

19On a simple model there is only one metaphysically necessary truth, which both ‘it’s actually sunny’
and ‘1=1’ both express, and that this proposition is knowable a priori if accessed via a guise corresponding
to the latter sentence.

20There are many such strategies that could be used to do this. See, for example, Stalnaker [46], Salmon
[40], Soames [45], Saul [42] (p6), Crimmins & Perry [10], Richard [39], Braun [6] and so on.

21One model of temporalism identifies propositions with sets of world-time pairs. On this model, proposi-
tions are more fine grained than sets of worlds, and so one would not expect propositions to be individuated
by necessary equivalence. That is, one would expect to be able to find metaphysically necessarily equivalent
propositions that are distinct. In particular if there was a metaphysically necessary proposition, p, that was
distinct from > we could in principle find an operator O applying to > but not p. By (*) this would mean
that metaphysical necessity was not broader than O. This is the rough intuition at any rate; we iron out
the details in what follows.
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agreeing about the fundamental facts (assuming that the same propositions are fundamental
on Wednesday as on any other day) but disagreeing about whether it is Wednesday.22

Vagueness is another context in which we employ operators that are not subsumed by
metaphysical necessity. If Harry is bald, and it is moreover not borderline whether Harry
is bald we say that it is determinate that Harry is bald. In the study of vagueness the
determinacy operator — as defined from in terms of borderlineness as above — is usually
assumed to be a normal modal operator, and is plausibly a necessity operator in our sense.23

But most people theorizing about vagueness in this way, at least implicitly, reject the idea
that metaphysical necessity is broader than determinacy. In particular the following schema
— a consequence of the claim that metaphysical necessity is the broadest necessity — is
inconsistent with some commonly held assumptions:

If it’s metaphysically necessary that A then it’s determinate that A

The assumption in question is the appealing idea (explicitly accepted by many theorists)
that the vague metaphysically supervenes on the precise: whether Harry is bald supervenes
on how many hairs he has, whether a pile is a heap on how many grains constitute it, and
so forth. One might think, as before, that all truths supervene on the facts about the values
of fields at particular space-time points, and these are not the sorts of facts that could be
vague.

Suppose that it is borderline whether Harry is bald, and that there is some precise
truth p (that Harry has exactly n hairs, say) that metaphysically entails the truth about
Harry’s baldness. Moreover, since it is not determinately false that Harry is bald, and by
assumption p is determinately true it follows that it’s not determinately false that: p and
Harry is bald.24 Since it is not determinately true that Harry is bald either, by parallel
reasoning it follows that it’s not determinately false that: p and Harry is not bald. But if
metaphysical necessity was the broadest necessity then everything that is not determinately
false would be metaphysically possible (by contraposing the above conditional schema above
and applying the duality of necessity and possibility). Thus it’s metaphysically possible
that (p and Harry is bald) and metaphysically possible that (p and Harry is not bald),
contradicting the assumption that whether Harry is bald supervenes on p.

Indeed there are lots of positions in the wider philosophical literature that entail that
metaphysical modality is not the broadest operator. For example, some philosophers think
there can be counterpossibles: false counterfactuals with metaphysically impossible an-
tecedents (see, e.g., Nolan [34], Brogaard and Salerno [7]). In that setting metaphysical
necessity would not be as broad as counterfactual necessity, defined as �A := (¬A� ⊥).25

22The fact that metaphysical necessity is not broader than eternal truth is of course a surprising conse-
quence of the standard semantics for tense logic that takes a good deal of getting used to, and it has recently
been challenged by Dorr and Goodman [13]. Dorr and Goodman have things to say about both of the sorts
of arguments that I have given above. They reject the coherence of an actuality operator satisfying the
usual axioms, and cast doubt on the idea that everything supervenes on the eternal. However I find the
latter idea so attractive that I have nonetheless not been won over by their arguments (I briefly treat this
issue in Bacon [3], footnote 16 and the surrounding text).

23There is, of course, an open question whether determinacy operators are linguistic necessities or proposi-
tional necessities. Many theorists, such as McGee [32] and Williamson [50], assume it is a linguistic necessity,
although others do not (see Fine [17], Field [16], Bacon [4], and Bacon [2]).)

24This is the modal inference from 3A and 2B to 3(A∧B) which is easily derivable in any normal modal
logic, and so in particular holds when 2 is interpreted as ‘determinately’.

25� is a necessity operator since (¬>� ⊥), is equivalent to the logical truth ⊥� ⊥, which is itself
plausibly the same proposition as > (this assumption goes beyond Booleanism, but is a natural one to
make). Moreover if ¬A→ ⊥ was a counterpossible that just means that A is metaphysically necessary but
not counterfactually necessary.
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Similarly, some philosophers think that metaphysical necessity doesn’t abide by the S4
principle (Chandler [8], Salmon [41]). In other words, 2A does not imply 22A, and so
metaphysical necessity is not be as broad as its iteration 22.

The idea that metaphysical necessity is the broadest necessity is thus not the uncon-
tentious assumption that it is sometimes taken to be. Among other things, it takes a
stand on the combination of views that maintain that (i) some propositions are temporar-
ily true/borderline and (ii) the supervenience of all truths on the eternal/precise. It also
excludes by fiat other open questions about the logic of metaphysical necessity and coun-
terfactuals.

Our objection to the thesis that metaphysical necessity is the broadest necessity is not
that there is some broader notion of necessity that subsumes it, for neither determinacy nor
eternality are broader than metaphysical necessity. There are plenty of propositions that are
always true or determinately true that are not metaphysically necessary. These operators
are thus incomparable. This leaves it very much open whether there is a necessity operator
broader than all three, or nothing broader than them.

3 Propositional Identity

The question of broadness is quite intimately connected with questions concerning propo-
sitional fineness of grain. If, for example, there is a proposition, A, distinct from but
necessarily equivalent to >, for some candidate notion of necessity 2, then one can always
find another necessity operator, 2′, that doesn’t apply to A. Since A and > are distinct,
being identical to > applies to > but not A, so we can let 2′ be the operator ‘being identical
to >’. Since 2′> just means > is identical to >, and this fact is plausibly necessary for any
weak necessity (since, plausibly, the proposition that > is identical to > is itself identical
to the tautologous proposition), 2′ is a necessity operator. Moreover, 2 is not as broad
as 2′ since the material conditional 2A → 2′A is false, yet at minimum, the truth of this
conditional is required for 2 to be as broad as 2′ (substituting 23 for truth in our definition
of broadness). We may draw a general moral as follows: for any notion of necessity 2,
if propositions are more fine-grained that 2-necessary equivalence, 2 is not the broadest
necessity operator.

We can make this argument (and the logic of fineness of grain more generally) explicit
by introducing a binary propositional connective, A = B, into the propositional calculus
that expresses the idea that A is the same proposition as B. (The propositional identity
connective must be distinguished sharply from the identity relation between individuals
denoted by the same symbol; since the latter will not feature prominently in this paper no
confusion should arise.)

We can add axioms to the propositional calculus that tell us how propositional identity
should behave.26 Taking the first-order theory of identity as our guide, it’s natural to start
with versions of the law of self-identity and Leibniz’s law:

Identity: A = A

Substitution: A = B → (φ→ φ[A/B])

26For the propositional calculus we take all tautologies as axioms, and take modus ponens as our only
rule of inference.
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Whatever your views about fineness of grain, every proposition is identical to itself, and
if two propositions are the same, then either they are both φ or neither are, so they are
intersubstitutable in all contexts φ.

The further assumption of Booleanism can be imposed via the following rule of inference:

Rule of Equivalence: If ` A↔ B then ` A = B

Every Boolean identity — say A ∧ B = B ∧ A — can be proved from this rule, since it is
possible to prove the corresponding equivalence given the propositional calculus — in this
case A ∧B ↔ B ∧A. However the rule of equivalence is strictly stronger than Booleanism:
it allows us to prove the identity of propositions that can be proved equivalent given the
propositional calculus with the laws of Identity and Substitution. For example, since
one can prove that A = B ↔ B = A (exactly as one proves the symmetry of first-order
identity) one can prove the identity (A = B) = (B = A) even though it is not a Boolean
identity.

In what follows we shall call the result of adding Identity and Substitution to the axioms
of the propositional calculus, and closing under the rule of modus ponens and the Rule of
Equivalence: the logic of propositional identity.

Suszko [47] and Cresswell [9] have explored a broad notion of logical necessity that can be
defined in terms of the identity connective.27 A proposition is necessary, on this conception
if it is identical to a logical truth. In general we shall write LA as short for the formula:

Definition of L: A = >

A number of nice properties can be proven of this operator, as follows. (Rather than giving
by and large uninformative axiomatic proofs, I give informal explanations of how to produce
them in the following propositions.)

Proposition 3.1. From the logic of propositional identity one can derive all of the theorems
of S4 for L.

Proof. We begin by showing that the axioms of S4 are provable in the logic of propositional
identity. To show K it suffices to get B = > from (A → B) = > and A = >. An instance
of substitution states: (A = >) → (((A → B) = >) → ((> → B) = >)), substituting
> for A in A → B. Applying modus ponens twice to both our assumptions we get that
(> → B) = >, and since (> → B) = B, by the Rule of Equivalence, we can apply
Substitution again to get B = > as required.

T amounts to the claim that A = > → A. An instance of Substitution is A = > →
(> → A) which yields the desired conclusion by the propositional calculus.

4 amounts to the claim A = > → (A = >) = >. Note that we can prove (> = >) = > by
Identity and the Rule of Equivalence. Assuming A = > Substitution allows us to substitute
the first > for A, getting us (A = >) = > as desired.

Finally, we we can show that whenever A is provable in S4 we can prove it from the
logic of propositional identity. We show this by induction. The base cases, involving one
step proofs (i.e. axioms), are given above. Suppose that whenever A is provable in S4 by a
proof with n steps, we can prove it in the logic of propositional identity. Suppose the last
step of a n+ 1length proof is an application of the rule of necessitation, from A to A = >.
By the inductive hypothesis, we can prove A from the logic of propositional identity, and
we can prove >, so we can prove A ↔ >, and thus by the Rule of Equivalence A = >. If

27The differences between these authors mainly consists in whether the Rule of Equivalence is accepted.
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the last step is an application of modus ponens, then we can also prove it in the logic of
propositional identity using modus ponens.

It’s also worth noting that the assumption of Booleanism allows us to prove that propo-
sitional identity is just a kind of necessary equivalence. This is a distinctive consequence of
Booleanism: such a result clearly cannot hold on a structured account of propositions, for
example.

Proposition 3.2. A = B is provably equivalent to L(A ↔ B) in the logic of propositional
identity.

Proof. To show the left to right direction assume A = B. By necessitation for L we can
show that L(A↔ A). So by our assumption and Substitution we may conclude L(A↔ B)
substituting the second A for B.

To show the right to left direction assume (A ↔ B) = >. Now (A ↔ B) → A is
logically equivalent to (A ↔ B) → B, given the propositional calculus, so the Rule of
Equivalence ensures that ((A ↔ B) → A) = ((A ↔ B) → B). Applying Substitution we
can conclude (> → A) = (> → B), substituting > for A ↔ B, since they are identical
by our assumption. And finally, since we can prove from the Rule of Equivalence that
(> → A) = A and (> → B) = B it follows, applying Substitution twice, that A = B as
required.

Note that in the above argument we appealed to the Boolean identities ((A ↔ B) →
A) = ((A ↔ B) → B) and (> → A) = A. Thus the appeal to the Rule of Equivalence can
be replaced with the weaker assumption of Booleanism in the above.

Note, of course, that given the Rule of Equivalence we can conclude from proposition
3.2 that (A = B) = L(A↔ B). Thus identities are identical to necessary equivalences.

From our notion of L-necessity we can define other useful notions. L-possibility can be
introduced as the dual of L: MA := ¬L¬A. Logical entailment is naturally expressed in
terms of the identity connective: A entails B if and only if A ∧ B = A. Given proposition
3.2, this is equivalent to L((A ∧ B) ↔ A) which, by the Rule of Equivalence, is equivalent
to L(A → B), since (A ∧ B) ↔ A is a Boolean equivalent of A → B. Thus entailment is
similarly equivalent to a kind of strict implication.

Note that L-necessity materially implies every other weak necessity operator. This can
be captured by the schema, provable from Substitution: if 2 applies to > (i.e. 2 is a weak
necessity) and A is L-necessary (i.e. A is identical to >) then 2 applies to A as well, by
Substitution.28 This feature is a direct result of defining L-necessity out of propositional
identity, and we did not need to appeal to Booleanism to prove it. This fact also strongly
suggests that the question we raised at the beginning about the existence of a broadest
necessity operator can be settled positively. Thus we might conjecture:

Conjecture 3.3. L is (i) a necessity operator and (ii) is at least as broad as any other
necessity operator.

Since the definition of a necessity operator, and the second part of this conjecture, are
most naturally stated using quantification into operator position, to formulate this properly
we shall have to use higher-order logic. However, it is worth noting that other than a

28This fact was originally noticed in Bacon [4], chapter 11. However, this result on its own is so weak that
it appears uninteresting, for it only characterizes the broadest necessity up to its extension. If Alice said
the tautology, and nothing else, then Alice said that counts as broader than every other necessity as well.
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small amount of quantificational logic, this theorem can effectively be proved from Identity,
Substitution and the Rule of Equivalence (see the proof of theorem 4.1 below).

4 The Broadest Necessity

In the last section we suggested that there is a broadest necessity on the assumption that
there is a binary ‘propositional identity’ connective satisfying Identity, Substitution and the
Rule of Equivalence. However someone skeptical of the idea of a broadest kind of necessity
might also be skeptical of the notion of propositional identity, insofar as this is understood
as a very broad kind of necessary equivalence (see proposition 3.2). It would be nice if we
could prove both existence of a broadest necessity and the propositional identity connective
from some more general theory, without having to assume one to get the other.

Even if there exist connectives corresponding to the broadest necessity and propositional
identity, these would be highly intensional connectives. It would be similarly nice to be
able to give these connectives some sort of reductive analysis, in non-intensional terms, as
some philosophers have attempted in the case of metaphysical modality (e.g. Lewis [30],
Armstrong [1]). In the case of metaphysical modality most of these projects are extremely
contentious. By contrast I believe that we have a route to something like a reductive
analysis of the broadest necessity in broadly logical terms: we can define them terms of
the higher-order universal quantifiers and truth functional connectives. This is surprising in
light of the fact that no intensional notions can be straightforwardly defined from the first
or second-order quantifiers and truth functional connectives.

In higher-order logic it is exceedingly simple to define a weak necessity operator that
materially implies every other weak necessity. We shall call this operator L, reusing our
notation from section 3.

Broad Necessity: A is broadly necessary if and only if every weak necessity operator
applies to A.

LA := ∀X(X> → XA).29

If a proposition is broadly necessary, then it is metaphysically necessary, a priori true, always
true, determinately true, and so on, since each of these are weak necessities. More generally,
if every weak necessity operator applies to A, and 2 is a weak necessity operator then 2A. So
the material implication LA→ 2A holds whenever 2 is a weak necessity operator. Showing
that L is in fact as broad as 2 requires showing that the strict implication 2′(LA→ 2A) is
true for every necessity operator 2′ — something we shall do shortly. For now note that our
definition of L can be carried out entirely in logical vocabulary, so that if it can be shown
that L is the broadest necessity we will have succeeded in giving it a seemingly reductive
definition, in pure logic no less.

It is also possible to define a binary connective that satisfies both self-identity and
substitution. Again we will reuse our terminology from section 3 and denote it with the
symbol = (this terminological overloading will receive a proper justification shortly.)

Leibniz Equivalence: A is Leibniz equivalent to B if and only if every operator
applying to A applies to B.

29The operator L itself is defined as follows: L := λY ∀X(X> → XY ).
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A = B := ∀X(XA→ XB)30

A = A just amounts to the obvious truth ∀X(XA→ XA). Moreover if A and B are Leibniz
equivalent and φ is any term of type t then we can infer φ → φ[A/B]. For A and B are
Leibniz equivalent that every operator applying to A applies to B, so in particular if the
operator λX φ[X/B] applies to A it applies to B too. Since Leibniz equivalence satisfies the
two characteristic axioms for identity we have used the symbol =, and we shall often call
Leibniz equivalent things simply identical.

A variant definition of Leibniz equivalence replaces the conditional with a biconditional:
∀X(XA ↔ XB). That these definitions are equivalent can be demonstrating by showing
that the first definition of Leibniz equivalence is symmetric. For if every operator apply to
A applies to B then for any operator, X, of type t → t there is a the composite operator
λx¬Xx (where x is of type t). We know that if this operator applies to A it applies to
B — i.e. ¬XA → ¬XB — so by contraposition we know that if XB → XA as required.
It is worth noting that according to our definitions being broadly necessary is the same as
being Leibniz equivalent to >, since LA and > = A expand to the same thing. Given the
symmetry of = this means that LA and A = > are equivalent — mirroring the characteristic
relationship between L and = we explored in the last section.

A conspicuous objection to the foregoing runs as follows: since the higher-order quanti-
fiers used to define L (and =) range over intensional entities, the quantifiers must themselves
be somehow intensional, meaning that we have not succeeded in defining an intensional no-
tion from non-intensional notions after all. But this sort of reasoning seems in general to
be suspicious: note that even if there are intensional first-order objects — entities of type
e such as universals, that unlike sets, are not individuated by their extensions — few are
inclined to consider the first-order quantifiers intensional. Nonetheless, many philosophers
have found the idea that one can define intensional notions from extensional notions to be
mysterious: it bears a close resemblence to contentious theses such as the idea that it is
possible to reduce the modal to the non-modal, or the thought that it is possible to derive
an ought from an is. It will thus be an instructive exercise to examine how this happens in
a bit more depth.

An intensional operator is an operator within which materially equivalent propositions
are not intersubstitutable salve veritate. More generally, an intensional context is one in
which coextensive concepts cannot be intersubstituted salve veritate; if a context is not
intensional say that it is extensional. Someone sympathetic to the foregoing line of thought
might reasonably conjecture that it is possible to prove that anything definable from exten-
sional predicates using only λ must also be extensional.

It is possible, in higher-order logic, to make this conjecture precise by formulating defi-
nitions of intensionality and extensionality. For simplicity we shall restrict our investigation
to relational types. These are specified as follows: t is a relational type and σ → τ is a
relational type whenever τ is a relational type and σ any type. Intuitively a relational type
will have the form σ1 → σ2 → ...σn → t, and will thus represent an n-ary relation between
things of types σ1...σn. For each relational type σ we now define an equivalence relation ∼σ
of coextensiveness as follows.

Coextensiveness

– If φ and ψ have type t then φ ∼t ψ means φ↔ ψ.

30The connective itself is defined: ≈:= λY λZ ∀X(XY → XZ).
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– If τ is a relational type and φ and ψ have type σ → τ then φ ∼σ→τ ψ means
∀σx(φx ∼τ ψx).

For example, the claim that renate is coextensive with cordate amounts to the claim that,
for every x, x is a renate if and only if x is a cordate. Two binary relations, for instance,
loves and likes, are coextensive if for every x and y, x loves y if and only if x likes y, and so
on.

A context is extensional if coextensive things can be substituted salve veritate:

Extensional Contexts: If σ1...σn are relational types and φ is of type σ1 → ...σn →
t then φ is is extensional if and only if ∀x1...xny1...yn(x1∼σ1y1 ∧ ... ∧ xn ∼σn yn →
φx1...xn → φy1...yn) is true.

Intensional Contexts: φ of the same type is intensional if it is not extensional.

Thus, for example, a unary operator θ is extensional if ∀xy((x↔ y)→ θx→ θy).31

Our conjecture that it is impossible to define an intensional context from extensional
ones in the λ-calculus is now precise. But it is now possible to see that it is in fact false:

Observation: If there is a least one intensional operator then L is an intensional
operator.

If there is at least one intensional operator, X (metaphysical necessity, say) then there are
two materially equivalent propositions x and y such that Xx and ¬Xy. That is to say that
we have materially equivalent propositions that aren’t Leibniz equivalent. Consider the case
in which they are both true: since they are distinct at least one of them — call it z — is
distinct from > and so we have a truth that is not L-necessary. So L> and ¬Lz even though
> and z are materially equivalent. If they are both false, then since ¬x and ¬y are distinct,
at least one of them is distinct from > and so by similar reasoning we have a z materially
equivalent to > which is not L-necessary, so L is intensional in that case too. In other words:
the only way in which L could be extensional would be if the Fregean view were right and
there were only two propositions (in which case all operators would be extensional).

On the other hand we also have:

Observation: ∀σ and → are extensional.

Clearly → is extensional because it is truth functional. Moreover, suppose that F and G
are coextensive predicates of type σ → t. If F and G are coextensive — ∀σx(Fx ↔ Gx)
— then if ∀σF it follows that ∀σG by standard quantificational reasoning. Thus ∀σ is an
extensional context. It follows, given the assumption that there’s at least one intensional
operator, that L is intensional even though it is definable in the typed λ-calculus from
extensional primitives. Indeed, once this is noted we quickly find many intensional notions
that can be defined from extensional notions — propositional identity, which we defined as
Leibniz equivalence, is another such example.

The thesis we have established is that it is possible to define intensional notions from
extensional notions in the simply typed lambda calculus. One might therefore wonder if

31On this conception it can be contingent whether a relation or property is extensional. For example, the
actuality operator @ counts as extensional since material equivalents are in fact substitutable within the
scope of @, but it wouldn’t have been extensional had things been any other way. There is thus a more
demanding notion of being broadly necessarily extensional which could also be considered in this context;
the result discussed below that L can be defined from extensional notions also shows that L can be defined
from notions that are broadly necessarily extensional.
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the lambda calculus itself could be a source of intensionality. It’s not clearly meaningful to
ask whether the variable binding expression λ itself is an intensional or extensional notion,
since it is not really a relation or property of any type. However it should be noted that one
can define intensional notions in the λ calculus alone: application, λXλyXy, is one such
example, where X has type t→ t and y type t. For an intensional operator M might apply
to p and not q even when p and q are coextensive (i.e. materially equivalent). In which
case we have (i) M is coextensive with M (trivial), (ii) p coextensive with q but (iii) M
applies to p while it does not apply to q. So by definition application is not extensional.
This is just another instance of the emergence of intensionality. (Since the λ calculus is a
source of intensionality in itself, a natural question in the vicinity here is whether there is an
extensional basis of combinators for the lambda calculus. The K combinator is extensional
but the S combinator is not, so the textbook basis is not extensional; indeed it is easy to
prove that there can be no extensional basis since applying an extensional combinator to
something always results in an extensional output.)

Of course, one might simply reject our definition of extensionality and insist that the
higher-order quantifiers used in our definition must count as intensional simply in virtue
of the fact that one is able to define intensional notions from them. By these lights the
very project of giving an analysis of an intensional notion in non-intensional terms is mis-
guided; we can know that it will fail before we even try. Analogous reasoning can be used to
show that if David Lewis is correct — if there are many concrete worlds spatio-temporally
disconnected from our own, and modal notions can be defined in terms of first-order quan-
tification over them — then first-order quantification must be deemed intensional too, and
so a reduction to non-intensional notions must have failed. I have little to say about this
sort of attitude towards reductions, except that I anticipate that few apart from the most
die-hard anti-reductionist will be persuaded. If there are problems with Lewis’s account of
metaphysical modality, it was not that the project was incoherent from the get go. My own
view, at any rate, is that if such reductions are possible at all (and I’m inclined to think
that they are), then our definition of broad necessity is one of them.

Leibniz equivalence is an abbreviation for a connective that holds between two things
of type t. We could make the type of the arguments explicit by indicating the type with a
subscript: =t. Note however that the same idea could be used to define Leibniz equivalence
holding between entities of any type. If a and b are terms of type σ we may write a =σ b to
abbreviate ∀X(Xa→ Xb) (where X has type σ → t).

The theory H, introduced in section 1, encodes the core of classical higher-order logic.
However there are two further principles involving Leibniz equivalence that are part of my
preferred version of higher-order logic. (Not all of the results will require these further
principles; I shall always flag when a result does not.)

The first is a principle of functionality stating that if two functions X and Y of type
σ → τ output the same values for each of their arguments they are the same function:

Functionality ∀σx(Xx =τ Y x)→ X =σ→τ Y

This is a principle telling us when things of functional type σ → τ are Leibniz equivalent in
terms of the Leibniz equivalence of their values.

We can also impose the Rule of Equivalence introduced in section 3, this time as a
constraint on Leibniz equivalence. This is a constraint on Leibniz equivalence for terms of
type t only:

Rule of Equivalence If ` A↔ B then ` A =t B.
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As before this principle subsumes the assumption of Booleanism, ensuring that all provable
equivalences (whether proved in the propositional calculus or not) are identities. Note that
although the Rule of Equivalence imposes constraints on the structure of entities at type t, in
conjunction with Functionality it implies analogues of these constraints for higher types. For
example the Boolean operations can be lifted to predicates — predicate negation, ¬′, can be
defined by the term λXλy ¬Xy, for instance — and these operations can be shown to satisfy
the Boolean identities. For example, Booleanism at type t entails that ∀x(Fx = ¬¬Fx),
which by β fiddling, is equivalent to ∀x(Fx = (¬′¬′F )x). Applying Functionality yields
F = ¬′¬′F . Predicative versions of the other Boolean identities are proven in a similar
manner. (Indeed, analogues of Booleanism hold at every relational type.)32

Note that it is important to distinguish the Rule of Equivalence from what Suszko [48]
calls the Fregean Axiom, which is a material conditional, and not a rule:33

The Fregean Axiom (A↔ B)→ A =t B

The Rule of Equivalence only guarantees the identity of logically equivalent things (things
that can be proved to be logically equivalent in a given background system), and does not
in general guarantee the identity of material equivalents. The Rule of Equivalence seems
like the most natural way to weaken the Fregean axiom in a way that does not entail any
of its undesirable consequences.

If the system includes Functionality or the Rule of Equivalence or both we shall call it
HF, HE or HFE respectively. (Note that technically speaking the Rule of Equivalence is a
closure condition on a theory, so that it adds more theorems when combined with HF than
with H since we can prove more things materially equivalent given functionality. This same
point applies to the rules of Modus Ponens and Gen.)

From H we can give precise versions of the informal arguments that = satisfies Identity
and Substitution and that L materially implies every weak necessity operator we outlined
earlier. It can also be shown that L satisfies S4. Since this argument is relatively simple
and mirrors arguments we have presented already I shall only look at some representative
examples. The rule of necessitation for L follows straightforwardly from the rule of equiva-
lence as it did in section 3. Applying necessitation twice yields LL>, so we know that the
operator λxLLx is a weak necessity operator. If every weak necessity operator applies to
A — A is L-necessary — then in particular λxLLx applies to A, using the quantificational
principle UI. Thus LA → (λxLLx)A, and the 4 axiom follows by β-conversion. The K
and T principles also follow by similar arguments to ones we have considered earlier. For
example, for any B the operator λX(L(X → B) → LB) can be shown to be a necessity
operator using the Rule of Equivalence and the derived axiom of Substitution.34 Thus if
every weak necessity operator applies to A — i.e. A is L-necessary — then this operator in
particular applies to A so L(A→ B)→ LB establishing K.

This should all be relatively familiar. In the higher-order setting we can also raise

32Cian Dorr has pointed out to me that these results (and some of the results below) can be proven without
the functionality axiom if we assume a strengthening of the Rule of Equivalence: if ` Ax1...xn ↔ Bx1...xn
then ` A = B. This can also be seen as a rule version of the axiom of Functionality.

33Suszko does not state his principle in full-fledged higher order logic, and so his version takes the form
of a schema. Without employing higher-order resources, like Leibniz equivalence, it amounts to the claim
that all operators are extensional: A↔ B → φ→ φ[A/B].

34The rule of equivalence proves B = > → B. An instance of Substitution says B = (> → B)→ ((LB →
LB) = (LB → LB)) → ((L(> → B) → LB) = (LB → LB)), so we may conclude ((L(> → B) → LB) =
(LB → LB)). Since LB → LB, we may conclude (L(> → B) → LB) (by substitution again, substituting
the whole formula LB → LB for the conclusion). This is the desired conclusion.
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questions about the interaction of the quantifiers with broad necessity. The most famous of
these is the Barcan formula (see Barcan [5]):

The Barcan Formula ∀xLA→ L∀xA

The principle is most well known in the form where x is a singular variable ranging over
things of type e, but here I intend the schema to be good for every well-formed instance
involving variables of any type.

The Barcan formula may be proved in HFE with the help of the functionality principle.
Modulo definitions the antecedent says: ∀x(A = >). By β-equivalence this is equivalent to
∀x((λy A)x = (λy>)x). So by functionality λy A = λy>. So by Substitution ∀λxA(x) =
∀λx> (applying ∀ to both sides of the identity). Finally by quantificational logic we can
prove that ∀x> ↔ > so by the Rule of Equivalence we have ∀x> = >. Making that
substitution gives us ∀λxA(x) = >, or equivalently L∀xA, as required.

It is worth noting that the Barcan formula has a very different status from its converse,
which it is straightforwardly provable in HE. The converse is thus unavoidable without
modifying the logic of the quantifiers.35

The Barcan formula has many interesting upshots. One of these is the fact that the
universal quantifier behaves like a greatest lower bound. Recall that A entails B, which we
may write A ≤ B, iff A = A ∧B, and recall that this is equivalent to the strict implication
L(A → B) (see the discussion under proposition 3.2). Applying necessitation and Gen to
the following instance of UI, ∀xFx→ Fy, we obtain ∀yL(∀xFx→ Fy). This is equivalent
to ∀y(∀xFx ≤ Fy) which is just to say that ∀xFx is a lower bound of the Fy. Now suppose
that A is another lower bound: ∀y(A ≤ Fy). That’s equivalent to ∀yL(A→ Fy) and so by
the Barcan formula and quantificational reasoning L(A→ ∀yFy). And this is equivalent to
A ≤ ∀yFy. Since A was an arbitrary lower bound, ∀yFy must be the greatest lower bound.

It should be noted that the Barcan formula has a controversial status when understood
as a principle governing metaphysical necessity. For example, contraposing an instance in-
volving the first-order quantifiers we obtain the principle that if it’s possible that something
is F , then there’s something which is possibly F . But intuitively, even though Wittgenstein
could have had children, there is in fact nothing which could have been a child of Wittgen-
stein given the assumption that everyone has the parents they in fact have necessarily. One
might worry that the Barcan formula for broad necessity conflicts with similar intuitions,
casting doubt on one or both of our two further assumptions, Functionality and the Rule of
Equivalence.

One thing to note in this regard is that the intuitions for contingent existence of first-
order entities tell just as strongly against the converse Barcan formula. Since it’s necessary
that everything exists, the converse Barcan formula allows us to conclude that everything
necessarily exists. As we have noted already, the converse Barcan formula can be proved
without the help of Functionality. The usual diagnosis of this result is that it is the principle
of universal instantiation — a part of our base theory H — that is responsible, and so we
shouldn’t lay the blame at the feet of Functionality or the Rule of Equivalence.36

It is also worth noting that these two assumptions are only used in a limited way.
Firstly, apart from deriving the Barcan formula, Functionality is only needed to prove the
uniqueness of broad necessity and identity (see proposition 4.2 and 4.3). Secondly, even if

35∀xA → A is an instance of UI (making the vacuous substitution of x for x). Applying necessitation
for L gets us L(∀xA → A), and distributing L results in L∀xA → LA. Applying Gen directly gives us
L∀xA→ ∀xLA as required.

36See, e.g., Kripke [28].

20



one wants to make room for the contingent existence of first order individuals, the parallel
issue for the propositional quantifiers and the quantifiers at higher types are not obviously
analogous. One might think that propositions, properties, and operators, unlike individuals,
necessarily exist. Even if one restricts universal instantiation (or Functionality or the Rule of
Equivalence) for the first-order quantifiers, or for quantifiers over individual-involving types,
the arguments that follow can still all be carried out, for they all concern quantification over
propositions, operators, and other types that do not involve individuals.

The result of most importance for our purposes is that L is a necessity operator and is
moreover broader than any other necessity operator. Note that in the context of higher-
order logic we can state both of these ideas using single formulae quantifying into operator
position:

Proposition 4.1. The following are theorems of HE:

i. L is a necessity operator: ∀X(X> → XL>)

ii. L is at least as broad as any other necessity operator: ∀XY (Nec(X) → Nec(Y ) →
Y ∀x(Lx→ Xx))).

This is just a formalised version of conjecture 3.3. In order to show this note that in H one
can show that Leibniz equivalence satisfies Identity, Substitution, the Rule of Equivalence,
and that LA is equivalent to A = >. Thus propositions 3.1 and 3.2 can be similarly proved
under these definitions: the theorems of S4 for L are provable in H, and A = B is equivalent
to L(A↔ B). We can show 4.1 as follows:

Proof. To show (i) we must show that XL> is true whenever X is a weak necessity operator.
That is, we must prove ∀X(X> → XL>), where X has type t→ t. Note that we can prove
LL> from necessitation (proposition 3.1), and thus given the equivalence of LA with A = >,
we have L> = >. Substitution then entails that X> → XL>, substituting > for L> in the
theorem X> → X>. Applying Gen we get ∀X(X> → XL>) as required.

For (ii) we shall in fact show the stronger result that whenever X is a necessity operator
and Y a weak necessity operator Y ∀x(Lx→ Xx).

Suppose that Y is some weak necessity operator, and that X is a necessity, so that we
can assume: Y> and ∀Z(Z> → ZX>). Note that we can prove X> → ∀x(x = > → Xx)
by rearranging Substitution, and since this claim is provable it is logically equivalent and
thus identical to >, by the Rule of Equivalence. Since Y> we can conclude Y (X> → ∀x(x =
> → Xx)) by substitution.

Since X is a necessity operator we know that LX> (since L is a weak necessity operator),
from which it follows that X> = > (since LA and A = > are equivalent). So by Substitution
again we get Y (> → ∀x(x = > → Xx)), and finally Y ∀x(Lx → Xx)) by substituting
Boolean equivalents and the fact that Lx and x = > are provably equivalent so that Lx =
(x = >).

This almost completes our argument that L is the broadest necessity. However it should
be noted that the conclusion that L is the broadest necessity is a little premature. For all
we’ve said at this juncture there could be another operator, L′, that is at least as broad as
every operator. This would mean that L′ was at least as broad as L, and vice versa, but it
does not (yet) mean that they are the same. To show this we will need to make use of our
assumption of Functionality introduced earlier.
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Proposition 4.2 (Uniqueness of broad necessity (HFE)). There is at most one broadest
necessity operator.

Proof. If L and L′ are two maximally broad necessity operators, then they are at least as
broad as each other.

That L is at least as broad as L′ means that every necessity operator applies to (Lx→
L′x), and since L is a necessity operator L(Lx → L′x). Since L′ is at least as broad as L
we can similarly conclude L(L′x→ Lx). Since L is a normal modal operator (see theorem
3.1) we know that L(Lx↔ L′x). So by theorem 3.2 Lx = Lx′.

Generalizing we know that ∀x(Lx = L′x), and finally applying functionality we can
conclude L = L′.

This theorem therefore justifies our terminological abuse of using L for both the thing
we defined in section 3 from propositional identity, and here from Leibniz equivalence: since
they are both broadest necessity operators, they are identical by proposition 4.2. The
other notational abuse we made was to use the same symbol for Leibniz equivalence as
propositional identity. This justified by the following similar theorem:37

Proposition 4.3 (Uniqueness of Identity (HFE)). If ≈ and ≈′ are two binary relations on
type σ such that:

i. ≈ and ≈′ necessarily satisfy the law of self-identity: Lx ≈ x and Lx ≈′ x

ii. ≈ and ≈′ necessarily obey substitution: L(x ≈ y → φ → φ[x/y]), L(x ≈′ y → φ →
φ[x/y])

Then ≈ is Leibniz equivalent to ≈′: ≈=σ→σ→t≈′.

Proof. We first prove that x ≈ y ↔ x ≈′ y from assumptions that are L-necessary. Since the
assumptions are L-necessary we may conclude L(x ≈ y ↔ x ≈′ y) (since L is a normal modal
operator), and thus that x ≈ y = x ≈′ y by theorem 3.2. We can then use functionality
to show that ≈=≈′: firstly since, for any x, ∀y(λz(x ≈ z)y = λz(x ≈′ z)y) functionality
tells us that for any x λz(x ≈ z) = λz(x ≈′ z). By applying functionality again, and η
conversion that gives us ≈=≈′.

So it just suffices to prove x ≈ y ↔ x ≈′ y from necessary assumptions. Since by
assumption i) x ≈′ x and ii) x ≈ y → x ≈′ x → x ≈′ y we get x ≈ y → x ≈′ y. A
parallel argument establishes the other direction, so we have proven x ≈ y ↔ x ≈′ y from
assumptions that are L necessary.

The theorem effectively shows that any relations necessarily satisfying Identity and Sub-
stitution are the same modulo Leibniz equivalence. In particular they must be the same as
Leibniz equivalence, modulo Leibniz equivalence, since Leibniz equivalence satisfies both of
the theorem’s conditions.38

To illustrate this theorem, consider an alternative definition of identity in which a and
b are identical iff every reflexive relation applies to a and b: ∀X(∀z Xzz → Xab) (where
a, b are of some type σ and X is a binary relation of type σ → σ → t). It is easy to prove,

37The theorem below was proved using the Rule of Equivalence, however a version of it is provable without
that assumption with a slightly more intricate proof.

38For this argument to make any sense one must take heed of the types of these identifications: every
candidate identity relation between entities of type σ is Leibniz equivalent (at type σ → σ → t) to Leibniz
equivalence at type σ.
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in HFE, that our alternative definition of identity satisfies Identity and Substitution and
so by necessitation for L they do so of L-necessity. Therefore applying theorem 4.3, our
alternative identity relation must be Leibniz equivalent to Leibniz equivalence.

However someone concerned that Leibniz equivalence doesn’t express ‘real identity’ might
nonetheless worry that this theorem doesn’t really prove the uniqueness of identity. While
the candidate identity relations may all be Leibniz equivalent to one another, the worry
might go, we have no guarantee that they are really the same, and thus, in particular, we
have no guarantee that Leibniz equivalence is really identical to real identity.

Luckily a more subtle application of the theorem can head that worry off as well. For
suppose that there was a family of relations, =R

σ , at each type σ, that did express real identity
and that necessarily satisfies Identity and Substitution. We could then apply proposition 4.3
to show that =σ — Leibniz equivalence at type σ — and =R

σ are in fact Leibniz equivalent.
That is to say, every concept applying to =σ

R applies to Leibniz equivalence =σ. In particular,
consider the concept: being really identical to real identity, or λX(X =R

σ→σ→t=
R
σ ). This

property applies to =σ
R, and so it applies to Leibniz equivalence. That is: =σ=R

σ→σ→t=
σ
R).

In other words, real identity is really identical to Leibniz equivalence.

5 The Logic of Broad Necessity

Let us turn our attention once again to the propositional modal language of the operator L.
We saw in sections 2, 3 and 4, in different ways, that broad necessity satisfies the principles
of the logic S4. However this fact that does not completely settle the question of what the
modal logic of broad necessity is; since there could be other principles that are valid, S4 is
merely a lower bound.

The notion of validity relevant for our purposes may be defined as follows: a closed term
φ of type t in the language of higher-order logic is metaphysically valid (or just valid) if it
contains only logical vocabulary and the sentence Lφ is true. A term is purely logical if it
is constructed out of λ, variables, → and ∀σ only. An open term of type t is valid if its
universal closure is. The restriction to sentences containing only logical vocabulary is so
that we can focus on principles that are L-necessary but whose L-necessity does not depend
on the interpretation of any non-logical predicate. The usual schemata of propositional
modal logic, for example, can be understood as open sentences with variables replacing the
schematic letters.39 When I talk of the logic of broad necessity, in what follows, I simply
mean the set of metaphysical validities.

An upper bound on the logic of broad necessity is the modal logic Triv, which is axiom-
atized by adding to the normal modal logic K the schema:

Triv LA↔ A

There are no consistent normal modal logics that extend Triv (Hughes and Cresswell [24]
p67) so it is indeed an upper bound. This would be the modal logic of broad necessity
if the Fregean axiom were true: the principle that there are only two propositions (see
previous section). For then every truth would be identical to > and since no falsehood can
be identical to > a proposition is L-necessary if and only if it is true.

39It is worth comparing this with the notion of metaphysical universality adopted by Williamson [53]: in
the language of higher-order logic it amounts to a sentence which is purely logical and true (as opposed to
being purely logical and being broadly necessary). On Williamson’s conception there could be metaphysically
universal truths that aren’t even metaphysically necessary.
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Since the Fregean axiom is plausibly false, Triv is not metaphysically valid. Indeed we
can employ an argument due to Schiller Joe Scroggs to get a bit further and show that S5
is an upper bound. S5, recall, is the result of adding the following axiom to S4:

5 ¬LA→ L¬A

Or equivalently, by adding the Brouwerian axiom:

B A→ LMA

Scroggs shows that the logic of any proper extension of S5 is the logic of a frame with finitely
many worlds. The theorems of this logic can be refuted by reflection on the truth that, for
any n, it’s metaphysically possible, and thus broadly possible, for there to have been exactly
n stars, and the fact that these truths require the existence of infinitely many worlds. (In
more detail, there will be object language validities in any proper extension of S5 for which
one can transform these considerations into explicit counterexamples. See Scroggs [43] and
Williamson [53] p111 for a discussion of this result.)

So this means the logic of broad necessity contains S4 but doesn’t contain S5. But this
leaves matters quite open. For example, it leaves it open whether the logic of broad necessity
is properly included in S5 or if its logic neither contains nor is contained in S5, as would
happen, for instance, if the McKinsey axiom, 23A→ 32A, were valid.

It is worth mentioning that there are parallel questions about the logic of identity. One of
these is the necessity of distinctness: that if two propositions are distinct they are necessarily
distinct:

The Necessity of Distinctness: A 6= B → L(A 6= B).

Parallel questions concerning the necessity of distinctness arise at other types as well. In
fact these questions are closely tied to the status of 5 and B. Substituting B for > in the
above gives us 5, and there is a well-known argument getting us the necessity of distinctness
from B (see Prior [36] pp.206-207).40

A tractable question that is open at this juncture concerns whether it is possible to prove
any further modal principles about broad necessity from the system HFE. There might, for
example, be a cunning argument in HFE for the S5 axiom or the McKinsey axiom or some
other principle that we have just missed in our discussion in section 4. This question can in
fact be answered negatively:

Theorem 5.1. Consider the smallest set of terms, LL, in the language of higher-order logic
that contains: (i) a (given) infinite set of constants of type t (ii) contains the sentences ⊥,
Lφ, φ→ ψ whenever it contains φ and ψ. Then for any φ ∈ LL the following are equivalent:

There is a proof of φ (as a sentence of propositional modal logic) in S4

There is a proof of φ (as a sentence of higher-order logic) in HFE.

40Failures of the necessity of distinctness is one way in which my definition of metaphysical validity can
come apart from Williamson’s notion of metaphysical universality. For example there are models of HFE
in which there are four propositions but, because two pairs of distinct propositions are possibly identical,
it’s possible that there are only two propositions. In this model, the claim that there are exactly four
propositions is metaphysically universal, but not valid in my sense because it is not L-necessary. A natural
conjecture would be that on the assumption of S5 every metaphysically universal sentence in pure language
of higher-order logic is valid (the converse is trivially true).
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The theorem is proven by showing it is possible to construct, for any world in a transitive
reflexive Kripke model, a model of HFE which makes exactly the same sentences true (this
is done using Kripke logical relations; see Plotkin [35]). Since transitive reflexive Kripke
frames are complete for S4 it follows that models of HFE are complete for S4. (It is worth
noting, with regards to the preceding, that a model of HFE is just a model of propositional
modal logic — via the interpretation it assigns to L — with a lot of redundant structure).
So if there is a proof of something in HFE it is true in all models of HFE, and thus every
transitive reflexive Kripke frame which finally means it must be provable in S4. The converse
— that the theorems of S4 can be proven in HFE — we have shown already.

The above tells us that we cannot prove anything about broad necessity in HFE that
we cannot already prove in S4, but it tells us nothing about the set of sentences that
are metaphysically valid. By employing the same construction from the appendix we can
in fact show that it’s consistent with HFE that S4 proves exactly the sentences that are
metaphysically valid. That is to say, there is some model M of HFE such that for all
φ ∈ LL: φ is provable in S4 if and only if ∀p1...pnLφ is true in M . (Recall that a sentence
φ ∈ LL is metaphysically valid iff L∀p1...pnφ is true.) Indeed, the construction shows us the
following:

Theorem 5.2. Let Λ ⊆ LL be the modal logic of a single Kripke frame. Then there is some
model of HFE, M , such that:

• For every φ, φ ∈ Λ if and only if L∀p1...pnφ is true in M .

Informally: according to M , Λ consists of exactly the metaphysically valid sentences. In
particular, since S4 is the logic of a single Kripke frame (the canonical frame), there are
models in which S4 is exactly the logic of metaphysical validity.41

Although we can’t prove any principles that go beyond S4 from our assumptions so far,
a stronger logic may yet be metaphysically valid. Here I have nothing conclusive to say,
however there are some arguments against S5 that I take quite seriously that have lead me
to believe that S5 is not the logic of broad necessity. I consider some arguments in favor of
S5 in section 5.2, 5.3 and 5.4 as well.

5.1 The Argument from Vagueness

So far we have concerned ourselves primarily with the logic of broad necessity without
taking any stances on which propositions are broadly necessary beyond those expressed by
theorems of HFE. Further plausible candidates include propositions expressed by conceptual
truths, such as the truth that scarlet things are red, that everyone over the age of 40 is an
adult, that people with no hairs are bald, and so on.

Note that by varying the age, the shade of color, and the number of hairs in the above
examples we can generate sorites sequences of propositions that begin with broad necessities
and segue into propositions that are clearly not broad necessities. Thus for example:

1. It is L-necessary that people with no hairs are bald.

2. It is not L-necessary that people with at most a million hairs are bald.

41Thanks to an anonymous referee here for making me think more carefully about this question.
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As noted, 1 is plausibly true because it’s conceptually true that people with no hairs are
bald, and 2 is true simply because it’s not true that people with a million hairs are bald
and L is factive. By a bit of logic there must be some n such it is L-necessary that people
with at most n hairs are bald, but not L-necessary that people with at most n+ 1 hairs are
bald. Despite this result (which must be accepted by anyone who accepts 1, 2 and classical
logic) it is surely not a precise matter which this last broadly necessary proposition is. It
is rather borderline where it lies. In particular for the critical n and (and the surrounding
borderline cases):

3. It is borderline whether it is L-necessary that people with at most n hairs are bald.

We might formalize this ∇LA, where ∇B stands for the formula ¬∆B ∧ ¬∆¬B: it is not
determinate that B and not determinate that ¬B.

A logic of S5 would entail the impossibility of 3. For S5 guarantees both the conditionals
LA → LLA and ¬LA → L¬LA. But since L is the broadest necessity we know that the
conditionals LLA → ∆LA and L¬LA → ∆¬LA are true. Chaining these conditionals
together gets us that LA → ∆LA and ¬LA → ∆¬LA, which along with the instance of
excluded middle, LA ∨ ¬LA entails ∆LA ∨∆¬LA which is inconsistent with ∇LA.

5.2 The Argument from Kreisel’s Principle

There are a couple of theoretical arguments in favor of S5 that I would like now to turn
to. Both rely on technical assumptions that I do not think ultimately hold up to scrutiny.
However the surrounding issues are helpful to think about and bring out clearly what things
would have to look like in a non-S5 universe.

The first is a model theoretic argument. A model of higher-order logic assigns to each
type σ a domain Dσ. At functional types σ → τ the elements of Dσ→τ determine functions
from Dσ to Dτ . To evaluate terms of type t for truth we pick a subset T of Dt to represent
the truths. Finally we select elements cond ∈ Dt→t→t and all ∈ D(σ→t)→t to interpret the
conditional and quantifiers, with the constraint that they interact with the set T in the right
sort of way: we require that cond(a)(b) ∈ T if and only if a 6∈ T or b ∈ T , and we require
that all(f) ∈ T if and only if f(a) ∈ T for every a ∈ Dσ.

In general two elements of domain Dσ→τ can determine the same function from Dσ to
Dτ , but when this never happens we call the model functional. If every function from Dσ

to Dτ is determined by some element of Dσ→τ then the model is called full. If furthermore
the elements of Dt form a Boolean algebra, and the connectives and quantifiers express the
corresponding Boolean operations (this implies that T forms an ultrafilter of Dt and that Dt

has certain completeness properties) we call the model Boolean. If a model is Boolean and
|Dt| = 2 we call the model extensional. Finally call a model standard if it is full, functional
and extensional. (See the appendix for precise definitions.)

In first-order logic, if a sentence is true in every set theoretic model then it is true
simpliciter. Since the set of all first-order truths is certainly consistent in first-order logic it
follows by the completeness theorem for first-order logic that there is a model that makes
all of those sentences true, so if a sentence is true in all such models it must be among the
truths. This result holds even though there is no model in which the quantifiers have their
intended range, for in every model the quantifiers are restricted to a set and so no model
captures the unrestricted reading of the quantifiers. The reason is that there’s nothing we
can say in first-order logic that is true on the unrestricted reading of the quantifiers but is
false on every reading in which they are restricted to a set. (See Kreisel [26].)
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If we thought that standard models were the relevant analogue of first-order models
for higher-order logic then this sort of argument would not be successful since we do not
have an analogous completeness theorem for any recursively axiomatisable system relative
to standard models. Shapiro [44] has investigated the result of adopting this principle as an
independent assumption:42

Kreisel’s Principle: If a sentence of higher-order logic is true in all standard models
then it is true.

It is easily verified that the theorems of S5 for L are true in every standard model of higher-
order logic: since there are only two propositions in an extensional model, every truth is
identical to > and every falsehood identical to ⊥ so if the proposition that A = > is true it
is identical to > and if it’s negation is true then it’s negation is identical to >. So Kreisel’s
principle entails the truth of the theorems of S5.

As it stands, however, Kreisel’s principle is not particularly plausible. It entails the
Fregean axiom, since the Fregean axiom is true in all extensional models of higher-order
logic. For similar reasons it entails that there are no intensional operators, and many other
implausible theorems; in particular it entails that the logic of L is in fact Triv.

The contexts in which Kreisel’s principle is usually applied are mathematical and in
these cases it is not usually relevant whether or not there is intensionality. However if the
principle is to be at all plausible we need to weaken the principle somehow.

There are different ways to achieve this. One way is to restrict attention to sentences
whose quantifiers are restricted to extensional concepts. If φ is a sentence of higher-order
logic, let φ∗ be the sentence gotten from φ by restricting all of the quantifiers in φ to
extensional concepts. This has the effect of restricting, for instance, quantification over
operators to truth-functional operators.43 In a standard (extensional) model of higher-
order logic these restrictions are redundant (since, e.g., all operators were truth-functional
to begin with), but in a general model with more than two propositions they are not. Now
consider the following candidate weakening:

Weakened Kreisel’s principle 1: If a sentence of higher-order logic, φ, is true in
all standard models, then φ∗ is true.

This weakening of Kreisel’s principle is intended to capture the intuition that the content
of standard higher-order logic is true, provided it concerns extensional matters only. Thus,
for example, for each arithmetical truth, φ, there is a sentence of higher-order logic stating
that if X is a relation of order-type ω, then φ is true in the structure defined by X. The
totality of such truths will not be completely captured by HFE, or indeed any recursively
axiomatizable system. It is natural to think that truths like this — things that are true in
all standard models, but which don’t directly involve intensional notions — should be true
simpliciter, and this is what the weakening of Kreisel’s principle achieves.

Note, however, that it is straightforward to show that the models of higher-order logic

42The version stated below is distinct from, but closely related to Shapiro’s principle.
43We define the notion of an extensional concept as follows. First we define a relation ∼σ on each type σ.

p ∼t q stands for p ↔ q, a ∼e b means a =e b, f ∼σ→τ g means ∀xy(x ∼σ y → fx ∼τ gy). For each type
we may define an extensionality predicate of type σ → t as follows: Extσ(a) := a ∼σ a. φ∗ is the result of
simultaneously replacing subformulae of the form ∀σxψ with ∀σx(Extσ(x)→ ψ). It is worth noting that the
relation we have defined is an example of logical relation. (See the appendix for the definition of a Kripke
logical relation. A logical relation is a Kripke logical relation with exactly one world.)
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considered in the appendix satisfy this weakening of Kreisel’s principle.44 It thus follows that
this version of Kreisel’s principle cannot entail any modal principles not already provable
S4.

Another natural way to weaken Kreisel’s principle is to consider a more general class of
models, including models that contain more than two propositions. Consider the following
candidate weakening:

Weakened Kreisel’s Principle 2: If a sentence of higher-order logic is true in all
full, Boolean models then it is true.

This weakening does not entail the Fregean axiom either. Since I have not stipulated that the
models are functional, it does not entail functionality either, although of course functionality
may still be true.

This weaker version of Kreisel’s principle also entails the S5 principle:

Proposition 5.3. ¬LA→ L¬LA is true in every full Boolean model of higher-order logic.

This follows from the fact that full models contain the δ function discussed in the next
section.

On the assumption of Booleanism, the restriction to Boolean models in Kreisel’s principle
does not seem to be an obvious source of contention. One might try to justify the restriction
to full models as follows. When we quantify using a higher-order quantifier ∀σ→τ over
concepts with a functional type, we are by definition quantifying over all such functions.
After all, the only means we have to express the notion of every function of type σ → τ
is with the universal quantifier ∀σ→τ . Full models of higher-order logic therefore give us a
kind of miniature model of what things are like when you’re quantifying over all functions,
by contrast to non-full models in which you are only quantifying over some of the functions.

But the analogy between functions and concepts is prone to mislead. When we quantify
into the position that an operator occupies, for example, we are not really quantifying over
functions between propositions. Despite the sloppy way we talk about the things that occupy
types other than type e, they are not really well modeled by singular talk of propositions,
functions, and the like. Even if the behavior of these miniature models can be taken to be a
good guide to the world at large, it’s far from obvious that every function from individuals
to propositions corresponds to a property. For instance, if I apply a property F to an
individual a one might expect the resulting proposition to be about that individual, yet an
arbitrary function can map a to any proposition, whether about a or not.

In the context of the theory HFE presented above, there are several ways in which
higher-order quantification into, say, predicate position can fail to be faithfully modeled by
quantification over all functions. For example, in the case of functions, bijections (one-to-
one correspondences) are always invertible, in the sense that if f is a bijection there’s a
function g such that g ◦ f is the identity mapping. But there are models of HFE in which
the analogue of this claim is not true (see appendix). On the one hand, there is a concept
F (of predicate type, e → t) such that for any distinct individuals a and b the proposition
that a is F is distinct from the proposition that b is F , and every proposition is identical to
the proposition that a is F for some individual a. On the other hand, in this model, there

44Given a model of higher-order logic we can define the subset of each domain corresponding to the
extensional concepts, using a definition parallel to that of ∼ given in in footnote 43. This will be a congruence
with respect to application, and when the starting model is of the sort described in the appendix, it is easy
to see that the result of quotienting the model by the equivalence relation will always result in a standard
model. It follows that whenever φ is true in the quotiented model, φ∗ is true in the original model.
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is no concept G of type t→ e such that λxGFx = λxx. (Interestingly, in these models all
the one-to-one correspondences of type e → t are at best contingently one-to-one: this is
because there are distinct things of type t that are only contingently distinct.45)

We granted above that the behavior of ‘small’ set theoretic models of the type hierarchy
might be a good guide to the world at large. But it is far from clear that this is true. It should
be noted that Kreisel’s principle, even in the two weakened forms above, is extremely strong
and implies many surprising set theoretical theses, such as the existence of certain sorts of
large cardinals. For example the claim that the domain of individuals has inaccessible size
is something that can be stated with a sentence, A, in higher-order logic. Set theoretical
assumptions guarantee that A is in fact true. Now suppose there were no sets of inaccessible
size: then every set theoretic model makes A false even though it is in fact true, contradicting
Kreisel’s principle. Thus Kreisel’s principle entails the existence of inaccessible cardinals
(indeed it proves the existence of many other small large cardinals; see Shapiro [44]).

Apart from the set theoretical consequences, it implies non-obvious things about the
relation between the sizes of type e and type t entities. For example if there are exactly
as many propositions as individuals, as captured by the existence of a bijective concept
e → t, then Kreisel’s principle entails, assuming functionality, that there are effectively
no interesting differences, stateable in higher-order logic, between elements of higher-order
types that can be obtained from one another by switching es and ts. For example, it entails
operators (type t→ t) and predicates (type e→ t) are indistinguishable in this sense. This
is because in full functional models, the behavior of higher types is completely determined
by the sizes of the base types.46 These sorts of correlations are not provable in HFE.

It is worth asking what would happen if we were to relax the condition that the models
be full in our statements of Kreisel’s principle. In this case the principle has the same
status as the first-order version of the principle. Assuming the set of truths contains all
the theorems of HFE, then we can apply standard completeness arguments (due to Henkin
[22]) — that can be derived in ordinary ZFC without any large cardinal assumptions — to
show that there is a non-full model of that set of truths. Moreover, due to the completeness
theorem, the resulting principle will not entail anything that cannot already be proven in
HFE.

5.3 The Argument from Church’s δ Function

The argument from Kreisel’s principle is inherently model theoretic. An alternative object
language argument can be given in favor of S5 by assuming that a particular function belongs
to the domain of operations on propositions. The function I have in mind for this purpose
is known as Church’s δ function.47 In the present setting we may regard it as a four-place
connective of type t → t → t → t → t.48 In model theoretic terms it is the function that
given arguments a, b, c and d from Dt outputs c if a = b and d otherwise (it thus behaves a
little like a programmers’ conditional). In a full model it is always guaranteed that Church’s
δ function is a member of Dt→t→t→t→t. However there are models of higher-order logic that
do not contain the δ function (the models generated by theorem 5.1 include many such

45The models can be generated using Kripke logical relations — the general technique is outlined in the
appendix. Note that in the appendix we officially only work with one base type, t, however the definitions
are easily generalized.

46I’m indebted to Peter Fritz here for alerting me of these sorts of correlations between type e and t on
the assumption of Kreisel’s principle. See also Fritz [20] for some further potential constraints.

47Presumably named by analogy with the physicists’ Kronecker δ.
48In general there is a δ functions at each type σ → σ → τ → τ → τ .
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examples). It follows, in particular, that the δ function cannot be defined from the λ terms,
connectives, and higher-order quantifiers.

Although I described Church’s δ function in model theoretic terms, its behavior can be
captured purely in the object-language.

δ1 A = B → δABCD = C

δ2 A 6= B → δABCD = D

These principles will come out true in any model of higher-order logic in which δ is inter-
preted in the way described above.

Moreover, in any full model these principles will not only be true, but metaphysically
valid. We can capture this in the object language by the truth of the following two principles:

Lδ1 L(A = B → δABCD = C)

Lδ2 L(A 6= B → δABCD = D)

The above strengthening of δ1 and δ2 is sufficient to prove that broad necessity satisfies 5.
From the δ function we can define another broad notion of necessity: L′A := δA>>⊥ –

the connective that outputs > if A is > and ⊥ otherwise. It is straightforward to prove that
L′A↔ LA. If A = > (i.e. A is L-necessary) then δA>>⊥ = > by δ1, since > is true so is
δA>>⊥ by Leibniz’s law. This establishes LA→ L′A. On the other hand if δA>>⊥ is true
then it is not identical to ⊥ so, by contraposing δ2, A = >. This establishes L′A → LA.
Assuming the stronger principles Lδ1 and Lδ2, it is possible to show that this biconditional
is L-necessary (here we appeal to standard reasoning involving normal modal operators).
In particular every instance of the biconditional is L-necessary, and thus by proposition 3.2,
L′A = LA.

Given our definition of L′, the following are two instances of δ1 and δ2:

1. A = > → L′A = >

2. A 6= > → L′A = ⊥

In particular the antecedent of 2 is just ¬LA (from the definition of L). The consequent by
contrast is equivalent to ¬L′A = > and by the identity of L′A with LA we have ¬LA = >,
or L¬LA. Thus we have an argument for the 5 principle: ¬LA→ L¬LA.

Arguments that rest on the assumption that reality must reflect some feature of a model
must be taken with some care. Not all aspects of a model are reflected in reality — after all,
models are often made of sets, whereas reality is larger than any set and consists of things
that are not sets.

Superficially, it seems as though the above argument does not rest on model theoretic
assumptions connecting operators with set-theoretic functions, since it takes the form of a
derivation in the object language. However, the only justification we gave for the strength-
enings needed in our proof, Lδ1 and Lδ2, was that they are true in full models, and this
justification does seem patently model theoretic. It is thus hard not to suspect that the
motivation for thinking that δ is a well-defined connective rests on the thought that there
is a connective corresponding to each set-theoretic function from the propositional domain
to itself in a given model.

If we model unary connectives as functions from sets of worlds to sets of worlds, then
an admissible interpretation of a unary connective must be a function that preserves the
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identity of propositions at each world: if A and B are identical according to the world x, then
f(A) and f(B) must also count as identical according to x. (For Leibniz’s law guarantees
that the following should be true at each world: ∀X(A = B → XA = XB).) If A and B
are identical according to a world precisely when A and B denote the same element in the
model (i.e. the same set of worlds), then there is no contingent distinctness, and moreover,
every set-theoretic function vacuously satisfies this constraint, for it simply amounts to the
constraint that functions simply preserve identity. However, the assumption that when we
represent A and B using distinct objects in a model, this must be reflected in case being
modeled by the distinctness of A and B is exactly the sort of assumption we need to treat
with caution. If we suppose that a pair of propositions, A and B, may be distinct according
to one world and identical according to another, then A and B must in fact denote distinct
sets of worlds. Thus, in particular, A and B may be identical according to a world even if
they in fact denote distinct elements of the model. An arbitrary set-theoretic function may
thus map A and B to any pair of propositions, and so may fail to preserve identity-at-a-world
as required.

One might also think that Lδ1 and Lδ2 are guaranteed just by making certain stipula-
tions. The behaviour of δ was specified by stipulating that δABCD picked out one thing
if a certain condition obtained, and another if it didn’t, and that these stipulations held of
broad necessity. However, it can be shown that such stipulations are not generally a good
way of introducing a predicate or operator. For example, consider the function that takes
Alice to the proposition that it’s raining or it isn’t if Alice wins the lottery tomorrow, and to
the proposition that it’s raining and not raining otherwise. It’s worth highlighting that it is
hard to think of a predicate that has this behavior, casting further doubt on the assumption
that every function corresponds to a property. But even setting this aside, it is problematic
to suppose that these identities are necessarily correlated with Alice’s winning the lottery,
as would be required if we were to secure analogues of Lδ1 and Lδ2. What we would need
is a predicate, F , that satisfies the following two principles:

1. L(A→ (Fa = >))

2. L(¬A→ (Fa = ⊥))

Here a is Alice and A is the proposition that she wins the lottery tomorrow.
On the assumption that it is contingent whether Alice wins the lottery it is inconsistent

to suppose that these two principles are true. For suppose that in fact Alice does win the
lottery. Then Fa = > and so it’s L-necessary that Fa = > by the necessity of identity
(which follows from Substitution and the necessity of self identity: A = B → L(A = A)→
L(A = B)). On the other hand it’s possible that Alice does not win the lottery. So M¬A,
and since we are assuming L(¬A → Fa = ⊥) it follows, using modal reasoning in K, that
M(Fa = ⊥). We can put these two things together, again reasoning in K, to conclude that
M(Fa = > ∧ Fa = ⊥) and finally M(> = ⊥). Since we can prove that > 6= ⊥ we can
derive L(> 6= ⊥), a contradiction. The same argument would have worked if we supposed
that Alice didn’t win the lottery but might have done.

A general principle stating the possibility of definitions like this takes the following
form:49

49There are some similarities between this principle and a comprehension principle discussed in Walsh
[49] and Dorr [12], (in the latter under the title ‘Plenitude’). Unlike this principle, however, those principles
do not entail the Fregean axiom. Thanks to an anonymous referee for pointing this connection out.
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For any condition φ of type σ → t and propositions B and C there is some X of type
σ → t such that, L-necessarily, for any a of type σ, Xa = B if φa and Xa = C if ¬φa.

∀Z∀xy∃XL∀z((Zz → Xz = x) ∧ (¬Zz → Xz = y)) (where X,Z are of type
σ → t and x, y, z are of type t).

It is this sort of principle that we would need in order to define things like δ and L′ above.
But as we have just seen it can be shown to entail the Fregean Axiom, for if the Fregean
Axiom is false there are conditions Z that are L-contingent.

The sort of conditions used in the definition of δ were identities. One might hope to
patch up the argument by noting that, unlike the condition of winning the lottery, identities
are always either L-necessarily false or L-necessarily true. Note, however, that this principle
is just another way of stating the necessity of distinctness. As noted earlier, the necessity of
distinctness is exactly one of those principle we were attempting to prove (and indeed it is
equivalent to the 5 principle), so this version of the argument hardly provides an independent
argument for the necessity of distinctness and the 5 principle.

5.4 The Argument from Kripke Models

Another common argument for S5 rests on the idea that the broadest necessity tells us what
is true in all worlds, and broad possibility what is true in some worlds (see, e.g., Lewis
[30]). Since our quantifiers are intended to be read unrestrictedly (and not, say, restricted
to accessible worlds) we might expect the 5 principle to be true: if A is true in some world,
then the claim that A is true in some world is true in every world.

But this thought is quite subtle, and rests on a sort of picture thinking — often encour-
aged by thinking in terms of set-theoretic Kripke models — that is illicit in this context.
The objection goes as follows: If w is possible from the perspective of the actual world v,
say, but not conversely, then, at w we are not using the modal operator in the broadest
sense, since there is a possibility, v, which is being excluded. But this is to forget that we
are taking seriously the idea that distinct things are possibly identical, and for this very
reason we can’t assume that an accurate representation of modal reality using indices (rep-
resenting maximally strong propositions) and an accessibility relation (representing relative
possibility) has a modally rigid structure. The picture I envisage is that the proposition that
corresponds to the actual world — represented by the set {v} in our model — while distinct
from the inconsistent proposition — represented by the empty set — would be identical to
it had w obtained. Presumably this is nonsense when we are talking about the represen-
tations of the propositions in a Kripke model, assuming that the empty set is necessarily
distinct from any singleton set. But in that case, propositions cannot safely be assumed to
be sets of any sort, since we wish to take seriously the hypothesis that propositions can be
contingently distinct.

It is, in fact, possible to formulate the argument in higher-order logic by following Arthur
Prior in understanding worlds as maximally strong consistent propositions, or world propo-
sitions. More specifically, a world proposition is a proposition which is both broadly possible
and broadly entails every proposition or its negation. A proposition being true at a world
propositions iff the world proposition strictly implies it in the broad sense (see Fine [18]).
The above argument for the 5 principle then amounts to the claim that if a there is a world
proposition W that entails A, then every world proposition entails that there is a world
proposition that entails A. It is a theorem of our logic that every proposition necessarily
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exists, and so in particular W necessarily exists. Moreover, if W broadly entails a proposi-
tion, it necessarily entails it — an instance of the 4 principle, L(W → A) → LL(W → A).
A natural thought would be that since it’s necessary that W entails A, and that W exists,
it follows that it’s necessary that there’s a world proposition (namely W ) that entails A.

But this reasoning works only if we had some argument that W is necessarily a world
proposition. One of the conditions for a proposition to be a world proposition is that it be
broadly possible. If we are taking seriously the idea that the S5 principle for broad necessity
can fail, we must take seriously the the idea that it is contingent which propositions are
broadly possible, and thus, contingent which propositions are world propositions. According
to the resulting picture, it’s a contingent matter which world propositions there are: from the
perspective of each world, the broadest necessity quantifies over all world propositions, but
since which propositions count as worlds varies from world to world, there is still variance
concerning what is accessible from each world. Thus, the proposed argument for S5 fails,
even when we understand the quantifiers over worlds as ranging unrestrictedly.

(One might wonder what happens to world propositions at worlds where they do not
count as worlds. Recall that a proposition is broadly possible if it is distinct from ⊥. If a
proposition is contingently possible, then it is contingently distinct from ⊥: thus if a world
proposition W is is not a world proposition according to some other world V , then it is in
fact just the inconsistent proposition at V .)

These observations can also be brought to bear on an argument, due to Timothy Williamson,
that purports to show the necessity of distinctness by appealing to standard axioms gov-
erning the actuality operator (see Williamson [51]). In the Priorian framework, the actual
world is the unique world proposition that is true. But if the S5 principle fails, it may
be contingent whether this proposition is consistent (and, thus, contingent whether it is a
world proposition). Had it been inconsistent, then every proposition, including the incon-
sistent proposition, will be true at it, so we should not expect an actuality operator based
on this conception of actuality to behave in familiar ways.50 On the other hand, it seems
quite plausible that if a proposition consistent, then it is metaphysically necessary that it
is consistent. This must be true, for example, if metaphysical necessity was governed by a
logic of S5. In that case, the actual world is metaphysically necessarily well-behaved, and
the usual axioms governing the interaction of actuality and metaphysical necessity can be
assumed to hold.

6 Conclusion

We have raised some considerations in favor of and against the metaphysical validity of the
theorems of S5 for broad necessity, and have made a tentative case for a logic that does not
include the S5 principle.

Of course, one source of reluctance about giving up S5 is that it is a relatively simple and
well understood system, and it is moreover familiar because it is commonly held to be the
logic of metaphysical necessity. It is important to note that even if the broadest necessity
is not governed by a logic containing the S5 principle, it is completely consistent to assume
that weaker modalities, such as metaphysical modality, are.

It is possible, at any rate, that our expectation that the broadest necessity abide by a
logic of S5 is a holdover from the assumption that metaphysical necessity is the broadest

50For example, a standard theorem in the logic of actuality is 2(@¬p↔ ¬@p). But had every proposition
been actually true, then @¬p would true, and ¬@p false.
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necessity. Once we have acknowledged the non-trivial interaction between metaphysical
necessity and vagueness, for example, we both have reasons to think that metaphysical
necessity is not the broadest necessity, and that the broadest necessity has a weaker logic.
The fact that S4 (and not S5) is the most one can derive from a natural axiomatisation of
higher-order logic is also quite suggestive in this regard.

Of course, having shown that S5 is not forced upon us or that it is in fact invalid, doesn’t
settle what the logic of broad necessity actually is. For all we’ve said it could be a stronger
logic containing S4 but not properly extending S5. One might hope to settle this question
by an analogue of Scroggs’ argument, however this seems unlikely as the logics extending S4
do not have a straightforward characterization (see Dummett and Lemmon [14]), and the
principles involved are far more contentious. We leave these questions for further work.

7 Appendix

7.1 Models of Higher-Order Logic

We work within the simply typed λ-calculus with one base type, t. All other types may be
obtained as follows: t is a type, and if σ and τ are types, so is σ → τ .51

Type signatures such as the one described above can in general be modeled by applica-
tive structures (see Mitchell [33]). Here we shall focus on a particular kind of applicative
structure:

Definition 7.1 (Henkin structure). A Henkin structure is a collection of sets Aσ indexed
by the types σ with the property that

– Aσ→τ ⊆ AτA
σ

for each σ and τ

A Henkin structure is moreover full if:

– Aσ→τ = AτA
σ

Henkin structures then assign meanings to all type expressions. In general Henkin struc-
tures are too impoverished too interpret higher-order logic: we need to ensure that they
contain enough functions to interpret the typed λ-calculus.

Definition 7.2 (Rich Henkin structure).

A Henkin structure is rich iff, for each types σ, τ, υ there are elements Kστ ∈ Aσ→τ→σ and
Sστυ ∈ A(σ→τ→υ)→(σ→τ)→σ→υ satisfying the following properties:

– Kστxy = x whenever x ∈ Aσ and y ∈ Aτ

– Sστυxyz = xz(yz) whenever x ∈ Aσ→τ→υ, y ∈ Aσ→τ and z ∈ Aσ

Note that any model of the simply typed λ-calculus must contain S and K in each
relevant type, because we can define functions with their behavior just using λ-terms: λxλy x
and λxλyλz xz(yz). Of more note is the fact that if a Henkin structure contains S and K
then it contains every λ-definable function (see Mitchell [33] chapter 4).

51We have excluded the type e since all of the relevant definitions involve types constructed only from t.
This makes the presentation simpler, although nothing turns on this.
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Definition 7.3 (Signature). A signature Σ for a simply typed λ-calculus is a set of constants
c and a type assignment function Typ mapping each constant to a type.

Given an infinite set of variables V ar, the type assignment function can be expanded so
that it surjectively assigns types to every member of V ar in such a way that the preimage
of each type is infinite. We then expand Typ to assign types to strings of symbols from our
signature as follows (below and elsewhere we write ‘α has type σ’ when Typ(α) = σ):

c has type Typ(c)

x has type Typ(x)

αβ has type τ when α has type σ → τ and β has type σ

λxα has type σ → τ when x has type σ and α type τ

A term of the simply typed λ-calculus of signature Σ, LΣ, is any string in the domain of
Typ.

A variable assignment is a function g on V ar such that g(x) ∈ ATyp(x) for each x ∈ V ar.
We write g[x 7→ d] for the assignment that is exactly like g except it maps x to d. If a
Henkin structure is rich it is possible to interpret the simply typed λ-calculus over a given
signature.

Definition 7.4 (Henkin model). A Henkin model of a signature Σ is a pair (A, J K) where A
is a rich Henkin structure and J·K· a function taking each term of LΣ of type σ and variable
assignment to an element of Aσ, satisfying the following properties:

1. JcσKg ∈ Aσ

2. JxKg = g(x)

3. JαβKg = JαKg(JβKg)

4. JλxαKg = the unique function f ∈ Aσ→τ such that f(d) = JαKg[x7→d] for every d ∈ Aσ

Notice that if there is a function satisfying the condition in the last clause, it is unique
by the functionality of Henkin models. The fact that we have required the Henkin model to
be rich guarantees that there is always at least one function that satisfies the condition; this
follows from the point, noted above, that a rich Henkin structure contains every λ-definable
function.52

To interpret higher-order logic we focus on the signature H = {→} ∪ {∀σ | σ ∈ Type}
where → has type t → t → t and ∀σ type (σ → t) → t. From these the other logical
operations may be defined in the usual way, e.g. ⊥ := ∀(t→t)→t∀t, ¬ = λp (p→ ⊥), and so
on.

Definition 7.5 (Logical Henkin model). A logical Henkin model is a a triple (A, J K, T )
where (A, J K) is a Henkin model, ∅ ⊂ T ⊂ At, and moreover,

– J→K(a)(b) ∈ T iff a 6∈ T or b ∈ T

– J∀σK(f) ∈ T iff f(a) ∈ T for every a ∈ Aσ.

52Note that if we are working in an applicative structure that is not functional, then further constraints
on S and K are needed to to ensure that the λ-terms obey βη conversion. See Hindley and Seldin [23]p 86.
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Term φ of type t is true in a logical model M if and only if JφKg ∈ T for every assignment
g.

Logical Henkin models are models of higher-order logic: It is easily verified that every
theorem of H is true in a logical Henkin model. Note that logical Henkin models do not en-
code any assumptions about how fine-grained propositions are. For example, our constraints
ensure that J¬¬φK and JφK have the same truth value, but not that they are identical.

Example 7.1 (Boolean models). Suppose A is a rich Henkin structure, and that At is a
Boolean algebra such that every subset of At which is the range of some function f ∈ Aσ→t
has a conjunction in At. (This is satisfied, in particular, if At is a complete Boolean
algebra.) We may then define a logical Henkin model as follows. Let J∀σK(f) =

∧
a∈Aσ f(a)

and J→K(a)(b) = ¬a∨ b (where ¬,∨ and
∧

express the Boolean operations), and let T be an
ultrafilter on At with the property that whenever the range of some f ∈ Aσ→τ is a subset of
T , then its conjunction is also in T . It is easily verified that (A, J K, T ) is a logical Henkin
model, that moreover makes all of the theorems of HE true.

The status of the functionality principle is more subtle. In a Henkin model, but not in
an arbitrary applicative structure, if two elements f, g ∈ Aσ→τ output the same thing for
every argument, they are identical. This ensures that we can close our theory under a weak
functionality rule: if ` φx = ψx then ` φ = ψ. However there are logical Henkin models in
which the functionality axiom of section 4 is false; we will attend to this matter later in 7.5.

7.2 Kripke Logical Relations

We now introduce an important definition from Plotkin [35].

Definition 7.6 (Kripke logical relation). Let A be a Henkin structure, and let (W,R) be a
reflexive transitive Kripke frame. A binary Kripke logical relation over (W,R) is, for each
x ∈W , a typed family of binary relations ∼xσ over Aσ with the following properties.

– For every a, b ∈ Aσ, if a ∼σx b and Rxy then a ∼σy b.

– For f, g ∈ Aσ→τ , f ∼σ→τx g if and only if fa ∼τy gb for every y such that Rxy and
a, b ∈ Aσ such that a ∼σy b.

Clearly once you have fixed the behavior of a Kripke logical relation on the base domain
At its behavior is determined on all higher types. There is a close connection between Kripke
logical relations and the Kripke semantics for intuitionistic logic, in which we talk of types
being true at worlds, and in which a functional type σ → τ is true at a world x only if
τ is true at every σ world that is R-accessible from x. For convenience we shall continue
to suppress the type superscripts when the types can be inferred from the context. The
notion of Kripke logical relation we employ in the following is less general than Plotkin’s in
a couple of respects. Firstly, we will restrict attention to Kripke logical relations generated
by a family of equivalence relations ∼tx on the base type. (It’s worth noting that, even if a
Kripke logical relation is generated from an equivalence relation on the base types, it does
not follow that it is an equivalence relation on the higher types.) Secondly, Plotkin’s Kripke
logical relations can have any arity, whereas we restrict attention to binary relations.

Kripke logical relations where originally introduced by Plotkin in order to give a char-
acterization of the λ-definable functions in a model of type theory. For our purposes, the
most important result concerning Kripke logical relations is that every λ-definable function
is invariant under every Kripke logical relation.
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Theorem 7.1 (Plotkin). Let (A, J K) be a Henkin model of the empty signature, (W,R) a
transitive Kripke frame, and ∼ a Kripke logical relation on A with respect to (W,R). Then
for every closed term α, and world x ∈W , JαK ∼x JαK.

Proof. Given two variable assignments g and h we say that g ∼x h if g(v) ∼x h(v) for every
variable v ∈ V ar.

We will prove, by induction on term complexity, a stronger hypothesis that if g ∼x h
then JαKg ∼x JαKh for arbitrary terms α. The hypothesis is clearly true for variables.

Suppose that it is true for α and β of types σ → τ and σ respectively, and suppose
that g ∼x h. Then JαKg ∼x JαKh by inductive hypothesis. By the definition of a Kripke
logical relation, that means that if Rxy and a ∼y b, JαKg(a) ∼y JαKh(b). In particular, since
JβKg ∼x JβKh by inductive hypothesis, and Rxx, if follows that JαKg(JβKg) ∼x JαKh(JβKh).
Thus JαβKg ∼x JαβKh as required.

Now suppose that the hypothesis is true for α of type τ , let v be a variable of type σ and
suppose g ∼x h. We wish to show that JλvαKg ∼x JλvαKh, so suppose that Rxy and a ∼y b.
Then g[v 7→ a] ∼y h[v 7→ b], and thus by inductive hypothesis JαKg[v 7→a] ∼y JαKh[v 7→b]. This
is just to say that JλvαKg(a) ∼y JλvαKh(b), as required for the equivalence of functions.

The restriction to the empty signature can be lifted if we additionally impose that
JcσK ∼σx JcσK for each constant cσ in the language.

7.3 Modalized domains and models of HFE

Here we define a general class of models for HFE. In these models propositions will be
represented by sets of worlds. As we noted in section 5.3, if there is contingent identity
then there are principled reasons why the interpretations of functional types are not full
(i.e. do not contain all functions between the source and target types). The models that
follow are, in a natural sense, as full as they can be once you’ve laid down the structure of
the broadest necessity — i.e. once you’ve specified the set of worlds from which propositions
are constructed, and the accessibility relation representing the broadest necessity. The logic
validated by this class of models thus has many of the properties of the logic of standard
models: it will not, for example, be compact, or complete for any recursive axiomatic system.

To define these models we introduce an extension of Henkin structures that carry with
them information about modal structure. Recall that a Henkin structure consisted of a
type-indexed collection of domains Aσ, where a domain is just an ordinary set. Instead of
using sets, our domains will simply be certain Kripke logical relations. Let F = (W,R) be
a Kripke frame.

Definition 7.7 (Modalized domains). Let F = (W,R) be a transitive reflexive Kripke
frame. A modalized domain based on F is an ordered pair A = (|A|,∼A· ) such that:

– A is a set

– For each x ∈W , ∼Ax is an equivalence relation on W .

– Whenever a, b ∈ |A|, Rxy and a ∼x b, a ∼y b.

We shall drop the superscript from ∼Ax when it is clear from context.

Roughly, a modalized domain is a set of elements, along with a notion of identity, ∼x,
telling us which elements of A are identical at the world x. Given two modalized domains on
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F , A = (|A|,∼A), B = (|B|,∼B), we understand a function between them to be a mapping
which preserves identity at each world:

Definition 7.8 (Mapping between modalized domains). If A and B are modalized domains,
we write f : A→ B to mean:

– f : |A| → |B|

– For all w ∈W , if a ∼w b then fa ∼w fb

Given this one can define the ‘full’ function space between two modalized domains as
follows:

Definition 7.9 (Full function space for modalized domains). If (|A|,∼A) and (|B|,∼B) are
modalized domains on F we define the full function space, (|A⇒B|,∼A⇒B) as follows:

– |A⇒ B| = {f | f : A→ B}

– f ∼A⇒Bx g if and only if, for each a, b ∈ |A| and each y such that Rxy, if a ∼Ax b then
fa ∼Bx gb

Note that f : A→ B if and only if f ∼A⇒Bx f , meaning that ∼A⇒Bx is an equivalence relation
on |A ⇒ B| for each x ∈ W . It is similarly straightforward to show that ∼A⇒Bx ⊆∼A⇒By

whenever Rxy, showing that A⇒ B is indeed a modalized domain.

For the function space, the notion of identity on A and B respectively is lifted to functions
between A and B using the rule for Kripke logical relations. The condition for functions to
belong to |A⇒ B| is just the condition that functions preserve identity at each world x (a
condition that, of course, must obtain if we are to validate Leibniz’s law). Note that Plotkin’s
theorem says that each closed term built only out of λs and variables satisfies: JαK ∼x JαK.
This corresponds to the idea that λ definable functions will ‘necessarily preserve identity’:
for by the definition of ∼x between functions, the above means that whenever Rxy and
a ∼y b, JαK(a) ∼y JαK(b).

Definition 7.10 (Full modalized structure). A full modalized structure is a type indexed
collection of modalized domains, Aσ, with the property that:

– Aσ→τ = Aσ ⇒ Aτ

It should be stressed that when you throw away the W -indexed equivalence relations,
a full modalized structure is just a special kind of (non-full) Henkin structure, B, given
by setting Bσ := |Aσ|, and that the relations associated with each modalized domain form
a Kripke logical relation on B. Indeed, we could have defined the class of Henkin models
we were interested in directly, without the detour through modalized domains. However, it
is often helpful to carry the information encoded by the equivalence relations around with
the domains, and doing so fixes the behaviour of the function space constructor uniquely.
In the following, we shall move between the modalized structure and the ordinary Henkin
structure it corresponds to without comment.53

53Indeed, modalized domains form a cartesian closed category, where the morphisms between modalized
domains are simply functions that preserve the associated relations at every world. The above point can be
put categorically by noting that the forgetful functor A 7→ |A| from this category into Set is faithful, and
maps each full modalized structure to a Henkin structure.
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The definition of a rich structure, a model and a logical model over modalized structures
follows the same sequence of definitions as in section 7.1. In particular, a full modalized
structure Aσ is rich, a model, or a logical model iff the Henkin structure |Aσ| is rich, a model,
or a logical model. As before, a logical model on a modalized structure does not include any
assumptions about how fine-grained the elements of the propositional type are. However, in
the intended models, to be described shortly, there is a tight connection between the frame
(W,R) and the interpretation of the propositional type (At,∼t).

Proposition 7.2. Every full modalized structure is rich.

Proof. To show that a modalized structure A is rich we must show that the Sστυ and Kστ

combinators belong to the corresponding domains in A. To show that Kστ ∈ Aσ→τ→σ, for
example, we must show that Kστ preserves the Kripke logical relation associated with Aσ

and Aτ→σ respectively. Indeed, this preservation holds for all closed terms, by the same
reasoning employed in Plotkin’s theorem 7.1 (we shall not reproduce it here).

In what follows we write R(x) to abbreviate {y ∈W | Rxy}, for a relation R ⊆W ×W .
We are now in a position to describe, for each transitive reflexive Kripke frame (W,R), the
intended model for HFE for that frame (we may think of this as the intended model, on the
assumption that modal reality is accurately represented by (W,R)).

Definition 7.11 (Intended models). Let F be a pointed Kripke frame (W,R,@) where
(W,R) is a transitive reflexive frame, and @ ∈ W the designated world. Then (W,R,@)
determines a unique logical model, MF = (A, J·K, T ), based on a full modalized structure
A. It is constructed as follows. It suffices to: (i) say which modalized domain we use to
interpret the base type, At, (ii) specify T , and (iii) specify the interpretations of ∀ and →.

For (i) we get an modalized domain (At,∼t) as follows:

– At = P(W )

– p ∼tx q iff p ∩R(x) = q ∩R(x).

In other words, p and q are identical at x iff they are necessarily equivalent at x. For (ii)
and (iii) we follow example 7.1:

– p ∈ T if and only if @ ∈ p.

– J∀σK(f) =
⋂
a∈Aσ f(a)

– J→K(p, q) = (W \ p) ∪ q

For each transitive reflexive pointed Kripke frame F denote the corresponding model of
higher-order logic MF . We let C := {MF | F a transitive reflexive pointed Kripke frame}.

To show that the above really is a model we must show that MF is rich, and moreover
contains the interpretations of ∀σ and → above. (In what follows we assume a fixed frame
F , and we omit the subscript from MF accordingly.)

Proposition 7.3. M is a model of HE.

Proof. That M is rich follows from proposition 7.2. It remains to show that the interpreta-
tions of ∀σ and→ given by definition 7.11 really are mappings between modalized domains:
J∀σK : Aσ→t → At and J→K : At → At→t. That is to say, we must show that these functions
preserve ∼w at each world.
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The case of → is straightforward. For ∀σ, suppose f, g ∈ Aσ→t and f ∼x g. For
each a ∈ Aσ, a ∼x a so fa ∼x ga. Expanding the definition of ∼x, this means that
R(x) ∩ fa = R(x) ∩ ga for each a, and so R(x) ∩

⋂
a∈Mσ

fa = R(x) ∩
⋂
a∈Aσ ga. That is to

say J∀σK(f) ∼x J∀σK(g).
M is thus a logical Henkin model, in which At is a complete Boolean algebra, T and

ultrafilter on At, as described earlier. Thus M is a model of HE.

The next proposition shows that propositional identity in our model, which is defined
by Leibniz equivalence — ∀X(Xp ↔ Xq) — amounts to the same thing as necessary
equivalence relative to the modality defined by the accessibility relation R. In particular
x ∈ J∀X(Xp ↔ Xq)K if and only if every world accessible to x belongs to Jp ↔ qK. This
also has the consequence that x ∈ JLAK if and only if y ∈ JAK for every y such that Rxy —
that is, L is governed by a standard Kripke semantics in terms of the accessibility relation
R.

Proposition 7.4. Let a, b ∈ |Aσ|. Then for each x ∈ W , a ∼x b if and only if, for
every f ∈ |Aσ→t|, x ∈ f(a) ⇔ x ∈ f(b). In particular, when σ = t, Leibniz equivalence
corresponds to being necessarily equivalent (relative to R) in our model.

Proof. Suppose that a ∼x b and let f ∈ |Aσ→t|. Since f preserves ∼x it follows that
f(a) ∼x f(b) — i.e. f(a) ∩ R(x) = f(b) ∩ R(x). Since R is reflexive, x ∈ R(x) and so
x ∈ f(a) if and only if x ∈ f(b).

Conversely suppose that a 6∼x b. Define a function f as follows: f(X) := {y | X ∼y a}.
Clearly x ∈ f(a) and x 6∈ f(b). It remains to show that f ∈ |Aσ→t|. That amounts to
showing f : Aσ → At, or, more explicitly, that f preserves ∼z for each world z.

Suppose, then, that X ∼z Y . We want to show that f(X) ∼z f(Y ): that every f(X)
world accessible to z is an f(Y ) world and conversely. Let Rzw, and suppose that w ∈ f(X).
By the definition of f that means X ∼w a. Since X ∼z Y , X ∼w Y and since ∼w is an
equivalence relation Y ∼w a. So w ∈ f(Y ). The converse direction proceeds in exactly the
same way, so f(X) ∼z f(Y ).

Corollary 7.5. The functionality principle is true in M .

Proof. For any given world, x we want to show that x ∈ J∀x(Fx = Gx)→ F = GK, recalling
again that = is short for Leibniz equivalence.

By proposition 7.4 it suffices to show that if f, g ∈ Aσ→τ and fa ∼x ga for every a ∈ Aσ
then f ∼x g, since we have ∼x corresponds to Leibniz equivalence in our model. So suppose
the hypothesis, and let a ∼x b. Since f and g are in M they preserve ∼x, and so fa ∼x fb
and ga ∼x gb. Since ∼x is an equivalence relation, fa ∼x gb, and since this holds for every
such a and b, f ∼x g as required.

7.4 The completeness of S4

We can now prove theorem 5.1 as a corollary. Let F = (W,R,@) be a pointed Kripke frame.

Corollary 7.6. A sentence of LL is true in a pointed Kripke model (F , J·K) iff it is true in
a corresponding model of higher-order logic MF .

Proof. Here we construct M = MF as above, except we also need to provide interpretations,
JP KM for the propositional letters; these interpretations may simply be transferred from the
Kripke model. By proposition 7.4 we know that w ∈ JLAKM iff x ∈ JAK for every x such that
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Rwx, provided JAKM = JAK, and so by a simple induction we can show that for any formula
θ of the modal language LL (defined in section 4), w ∈ JθKM if and only if w ∈ JθK.

Now if φ is not provable in S4, it is false in some pointed Kripke model F with a transitive
and reflexive accessibility relation (see Hughes and Cresswell [24]). So φ is false in MF . Since
MF satisfies HFE, it follows that one cannot prove φ from HFE. Conversely, we have shown
in section 4 that every theorem of S4 is provable in HFE, establishing theorem 5.1.

7.5 Modalized functionality

Although we found the functionality principle to be attractive, and consequently adopted
it as a working hypothesis, many of the results in this paper do not rest on it. Here is an
extremely natural way to weaken the functionality principle:

Modalized Functionality L∀σx(Fx =τ Gx)→ F =σ→τ G

Modalized Functionality is sufficient to prove the uniqueness of identity and the broadest
necessity, and so is sufficient to prove, with the exception of the Barcan formula, the results
in section 4 given HE.54

It is relatively simple to tweak our models to generate a more general class of models
that invalidate Functionality and the Barcan formula, but validate Modalized Functionality.
Here we just outline the basic theory, leaving a more thorough treatment to future work. A
partial equivalence relation, or a PER, on a set D is a transitive symmetric relation on D. A
partial equivalence relation on a domain D can be equivalently thought of as an equivalence
relation on some subset of D (namely, the set {x ∈ W | x ∼ x}, where ∼ is a PER in the
first sense).55

Definition 7.12 (Expanding modalized domain). An expanding modalized domain for a
frame (W,R) is a pair A = (|A|,∼·) where:

– |A| is a set

– ∼· is a W -indexed set of PERs on |A| such that for every a ∈ |A| is in the field of
some ∼w.

– For all a, b ∈ |A|, and x, y such that Rxy, if a ∼x b, a ∼y b

Our choice of name for our domains is justified as follows:

Definition 7.13. The inner domain, D(w), of an expanding modalized domain A at a world
w is D(w) := {a ∈ |A| : a ∼w a}.

It follows straightforwardly from definition 7.12 that the inner domains are expanding
in the sense that D(x) ⊆ D(y) whenever Rxy.

The full function space between expanding modalized domains is defined as follows

Definition 7.14. Given expanding modalized domains, A and B, define A⇒ B by:

54One clue that Modalized Functionality is a profitable principle to study is that it is equivalent to a certain
natural adjunction principle for the quantifiers (discussed in Dorr [11]), in the presence of Booleanism at
each type. Thanks to Cian Dorr for pointing this out to me.

55Thanks to Jeremy Goodman for suggesting a simplification of the following definition.
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• |A ⇒ B| = {f : |A| → |B| | ∃x ∈ W such that ∀y ∈ W with Rxy and ∀a, b ∈ |A|, if
a ∼y b, fa ∼y fb},

• f ∼A⇒Bx g iff, for each a, b ∈ |A| and each y such that Rxy, if a ∼Ay b then fa ∼By gb.

Note the quantifiers in the definition of |A ⇒ B|: functions don’t need to preserve the
PER at every world, they merely need to preserve it from some world onwards (it is worth
thinking about why this must be.56)

The notions of richness, model, and logical model carry over as before. Following defi-
nition 7.11, one can define a class of intended models for each pointed frame as follows. A
model based on a frame (W,R,@) consists of an expanding modalized Henkin structure, A,
a truth set T , and interpretations of the logical operations, J∀σK ∈ A(σ→t)→t, J→K ∈ At→t→t,
subject to the following constraints:

– At = P(W )

– If p, q ∈ D(w) then: p ∼tw q iff R(w) ∩ p = R(w) ∩ q.

– ∼tx is a congruence with respect to arbitrary Boolean operations:

W \ p ∼x W \ q whenever p ∼x q⋂
i∈I pi ∼x

⋂
i∈I qi whenever pi ∼x qi for every i ∈ I

– p ∈ T iff @ ∈ p.

– J→K(p)(q) = (W \ p) ∪ q

– J∀σK(f) = {w ∈W | w ∈ f(a) for every a such that a ∈ Dσ(w)}

– J∀σK ∈ |Aσ→τ |

Note that the last condition amounts to the requirement that J∀σK preserve ∼ at all worlds.
This condition was automatically satisfied in all the models MF ∈ C of Functionality (as
proved in proposition 7.3). In this context, however, the constraint is not always satisfied.
Consider, for example, the frame (3,≤, 0) where 3 = {0, 1, 2} and ≤ is the usual ordering of
natural numbers. Then setting ∼t0=∼t2= {(W,W ), (∅, ∅)}, and p ∼t1 q iff p∩R(1) = q∩R(1),
it can be verified that the sentence, φ := ∃pqr(p 6= q ∧ q 6= r ∧ p 6= r), saying that there
are at least three propositions, is true at world 1 only. Moreover, in order to have a model
we must have JψK ∈ Dt(0) for every closed sentence of the language, or else the principle
of universal instantiation for the propositional quantifiers would not in general hold. This
condition fails in this model, since JφK = {1} and {1} 6∼0 {1}. The diagnosis in this case
is that J∀σK does not preserve ∼x at every world. Doubtless more needs to be said here,
however a proper investigation of these models would take us too far afield.

56With the stronger preservation condition functional domains would never properly expand. More prob-
lematic is the fact that we could not interpret every λ term if we imposed this condition. For example,
consider the frame ({0, 1},≤) and the expanding modalized domains A and B where |A| = |B| = {a} and
∼A0 =∼B0 =∼B1 = {(a, a)} and ∼A0 = ∅. Then, with the stronger preservation condition, |B ⇒ A| is empty as
there are no functions that preserve ∼0. Since |A| is non-empty, |A ⇒ (B ⇒ A)| is also empty since there
are no functions from a non-empty set into an empty set. But this means there is no interpretation for the
K combinator of type e→ t→ e in a model which interprets types e and t with A and B respectively. Our
definition, by contrast, ensures that every term has an interpretation.
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7.6 The behaviour of bijections in models of HFE

The sorts of models described in section 7.3 can be used to show other independence results.
We end by briefly describing how to use these techniques to construct a model (mentioned
in section 5.2) in which there is a bijection of type e→ t with no inverse in t→ e. Here we
use a Kripke frame (W,R) where W = N and R =≤.

Let Ae = At = P (N).

For x, y ∈ N let Rxy iff x ≤ y. (Any preorder that isn’t an equivalence relation would
work here.)

Now we define modalized domains for the base types as follows:

For a, b ∈ Ae, a ∼w b iff a = b

For a, b ∈ At, a ∼w b iff R(w) ∩ a = R(w) ∩ b.

As before we obtain modalized domains for the higher types using the modalized function
space construction. That is:

For f, g ∈ Aσ→τ , f ∼w g iff for every x such that Rwx, and every a, b ∈ Aσ such that
a ∼x b, fa ∼x gb.

Aa→b = {f : Aa → Aτ | for every w, f ∼w f}

By setting @ := 0 we can define a logical modalized Henkin model as above which makes
all of the theorems of HFE true.

It is immediate that any bijective function f : Ae → At preserves ∼x for each world x
and thus that f ∼x f , because ∼ex is just identity. So f ∈ Ae→t. It should be noted that
two propositions a, b ∈ At are Leibniz equivalent at 0 (0 ∈ Jx = yKg[x7→a,y 7→b]) if and only if
a = b, since by proposition 7.4 a and b are Leibniz equivalent at 0 iff they are necessarily
equivalent at 0. It is then easy to verify that a function f is satisfies the object language
statement that f is a bijective concept of type e→ t at 0, iff f is in fact a bijective function.

Note that bijections are at best contingently bijections. A bijection from Ae to At does
not count as ‘bijective’ at any world > 0. Let a = N and b = N \ {0}. Then a ∼1 b, but
since f is a bijection f(a) 6= f(b) so f(a) and f(b) are not identical at 1 in Ae. f thus fails
to be injective at 1 because it takes distinct things at 1 of type e to identical things at 1 of
type t.

This example also shows that no bijection can belong to At→e, since to belong to this
domain you must preserve ∼1, yet a ∼t1 b but for any bijection fa 6= fb (since a and b
are distinct) and so fa 6∼e1 fb. Since no bijective functions belong to At→e, the claim that
there’s a bijective function from t → e is false at 0 (because, as noted above, a function
counts as bijective at 0 iff it’s a bijection.) The object language claim ‘no bijection of type
e→ t has an inverse’ is also true in this model for similar reasons.
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